All patients with confirmed Corona Virus Disease 2019 were enrolled, and their clinical data were gathered by reviewing electronic medical records. Outcomes of severely ill patients and non-severely ill patients were compared. Results Of 145 hospitalized patients with COVID-19, the average age was 47.5 years old (standard deviation, 14.6) and 54.5% were men. Hypertension was the most common comorbidity (15.2%), followed by diabetes mellitus (9.7%). Common symptoms included dry cough (81.4%), fever (75.2%), anorexia (42.8%), fatigue (40.7%), chest tightness (32.4%), diarrhea (26.9%) and dizziness (20%). According to imaging examination, 79.3% patients showed bilateral pneumonia, 18.6% showed unilateral pneumonia, 61.4% showed ground-glass opacity, and 2.1% showed no abnormal result. Compared with non-severely ill patients, severely ill patients were older (mean, years, 52.8 vs. 45.3, p < 0.01), had a higher proportion of diabetes mellitus (16.3% vs. 6.9%, p = 0.08), had a higher body mass index (mean, 24.78 vs. 23.20, p = 0.02) and were more likely to have fever (90.7% vs. 68.6%, p = 0.01), anorexia (60.5% vs. 35.3%, p = 0.01), chest tightness (60.5% vs.20.6%, p < 0.01) and dyspnea (7.0% vs. 0%, p = 0.03). Of the 43 severely ill patients, 6 (14%) received high-flow nasal cannula oxygen therapy, and 1 (2.3%) received invasive mechanical ventilation. Conclusions Older patients or patients with comorbidities such as obesity or diabetes mellitus were more likely to have severe condition. Treatments of COVID-19 is still experimental and more clinical trials are needed.
Circular RNAs (circRNAs) have been emerged as an indispensable part of endogenous RNA network. However, the expression significance of circRNAs in hepatocellular carcinoma (HCC) is rarely revealed. The aim of this study was to determine the circRNA expression profile in HCC, and to investigate their clinical significances and relevant mechanisms for cancer progression. The global circRNA expression profile in HCC was measured by circRNA microarray. Levels of one representative circRNAs, hsa_circ_0004018, were confirmed by real-time reverse transcription-polymerase chain reaction. The expression levels of hsa_circ_0004018 in HCC were significantly lower compared with para-tumorous tissue (P<0.001). Our data further showed that lower expression of hsa_circ_0004018 was correlated with serum alpha-fetoprotein (AFP) level, tumor diameters, differentiation, Barcelona Clinic Liver Cancer stage and Tumor-node-metastasis stage. More importantly, we detected liver tissues from chronic hepatitis, cirrhosis and HCC patients; and found that hsa_circ_0004018 harbored HCC-stage-specific expression features in diverse chronic liver diseases (P<0.001). The area under receiver operating characteristic curve was up to 0.848 (95% CI=0.803–0.894, P<0.001). The sensitivity and specificity were 0.716 and 0.815, respectively. Finally, hsa_circ_0004018 might be involved in cancer-related pathways via interactions with miRNAs.
BackgroundHigh temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants.ResultsWe found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely.ConclusionsThis study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.
This paper introduces a new architecture for circuitbased Physical Unclonable Functions (PUFs) which we call the Bistable Ring PUF (BR-PUF). Based on experimental results obtained from FPGA-based implementations of the BR-PUF, the quality of this new design is discussed in different aspects, including uniqueness and reliability. On the basis of the observed complexity in the challenge-response behavior of BR-PUFs, we argue that this new PUF could be a promising candidate for Strong PUFs. Our design shows noticeable temperature sensitivity, but we discuss how this problem can be addressed by additional hardware and protocol measures.
Circular RNAs (circRNAs) are a class of new-found RNA molecules that have a special covalent loop structure without a 5' cap and 3' tail. Researchers have found that circRNAs may be generated by intron-pairing-driven or lariat-driven circularization. They are cleared up by way of extracellular vesicles. They have some advantages such as stability, conservation, and tissue specificity. By serving as sponges of microRNAs, interacting with long non-coding RNAs, mRNA, or proteins, circRNAs regulate gene expression at transcriptional and post-transcriptional levels and contribute to carcinogenesis. In recent years, circRNAs have been found to be correlated with many cancers including hepatocellular carcinoma, one of the most common cancers with high mortality. This article will first introduce the biogenesis, properties, and functions of circRNAs. Then we focus on the molecular mechanisms underlying some circRNAs, including hsa_circ_0001649, hsa_circ_0005075, and cerebellar degeneration-related protein 1 antisense, on hepatocellular carcinoma metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.