Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m−2·s−1 or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality of the seedlings after removal from storage.
Low-temperature storage in darkness is usually used for preserving seedlings for a short period. To investigate whether grafted watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] seedlings are superior to non-grafted ones under low-temperature storage in darkness and to study their physiological differences during storage, watermelon (‘Zaojia 84-24’) scions were grafted to pumpkin (Cucurbita moschata Duch. ‘Zhuangshi’) rootstocks. Carbohydrate levels; chlorophyll and malondialdehyde contents; the activities of superoxide dismutase, catalase, and peroxidase; and photochemical efficiency were assayed during 6 days of storage at 15 °C in darkness. After that, seedlings were transplanted into an artificial climate chamber. The net photosynthetic rate and stomatal conductance (gS) were measured on the first and third days after transplanting. The results showed that the grafted watermelon seedlings had more soluble sugar and chlorophyll contents, higher activities of antioxidant enzymes, and less malondialdehyde content than the non-grafted ones after 6 days of storage. In addition, low-temperature storage in darkness damaged the photosystem II of non-grafted watermelon seedlings more than that of grafted ones. After transplanting, grafted seedlings had a higher net photosynthetic rate. The results suggest that grafted watermelon seedlings were more suitable for the low-temperature storage in darkness than the non-grafted ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.