Metal-coordination-directed macrocyclic complexes, in which macrocyclic architectures are formed by metal-ligand coordination interactions, have emerged as attractive supramolecular scaffolds for the creation of materials for applications in biosensing and therapeutics. Despite recent progress, uncontrolled multicyclic cages and linear oligomers/polymers is the most likely outcome from metal-ligands assembly, representing a challenge to current synthetic methods. Herein we outlined the state-of-art synthetic approaches to the metal-coordination-directed macrocyclic complexes by using foldable ligands or through assembly of amphiphilic ligands. This mini-review offers a guideline for the efficient preparation of metal-coordination-directed macrocyclic complexes with predictable and controllable structures, which may find applications in many biology-related areas.
Novel cell-targeting ligand structures are constructed with a spikey core scaffold, where multiple copies of coiled-coil peptide nanorods are conjugated on the surface of a peptide nanosheet. Clustering of carbohydrate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.