The protection of video data has become a hot topic of research. Researchers have proposed a series of coding algorithms to ensure the safe and efficient transmission of video information. We propose an encryption scheme that can protect video information with higher security by combining the video coding algorithm with encryption algorithm. The H.264/AVC encoding algorithm encodes the video into multiple slices, and the slices are independent of each other. With this feature, we encrypt each slice while using the cipher feedback (CFB) mode of the advanced encryption standard (AES) with the dynamic key. The key is generated by the pseudo-random number generator (PRNG) and updated in real time. The encryption scheme goes through three phases: constructing plaintext, encrypting plaintext, and replacing the original bitstream. In our scheme, we encrypt the code stream after encoding, so it does not affect the coding efficiency. The purpose of the CFB mode while using the AES encryption algorithm is to maintain the exact same bit rate and produce a format compatible bitstream. This paper proposes a new four-dimensional (4-D) hyperchaotic algorithm to protect data privacy in order to further improve the security of video encryption. Symmetric encryption requires that the same key is used for encryption and decoding. In this paper, the symmetry method is used to protect the privacy of video data due to the large amount of video encrypted data. In the experiment, we evaluated the proposed algorithm while using different reference video sequences containing motion, texture, and objects.
In recent years, researchers have proposed a number of encryption algorithms and encryption schemes to protect the privacy of individuals or businesses. However, these encryption algorithms and encryption schemes are difficult to achieve a certain balance in term of encryption efficiency and security. In order to achieve this goal as much as possible, we propose a hybrid encryption technique, which makes the best use of two encryption techniques to achieve higher security and faster speed of encryption algorithm. We introduce two techniques in this hybrid encryption scheme. The first is scrambling and the second is encryption. We evaluated the performance of encrypted video by comparing the PSNR and SSIM values of the scrambled video and the encrypted video. Experimental results show that the proposed scheme has high encryption efficiency and good security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.