We propose and experimentally demonstrate a method of generating wideband and flat-spectrum chaos from a simple device configuration composed of a semiconductor laser subject to strong dispersive light feedback from a chirped fiber Bragg grating (CFBG). The dispersive feedback light induces external-cavity modes with irregular mode separations which beat with the internal modes of laser. This physical process of beating introduces more highfrequency oscillations and thus removes the domination of relaxation oscillation, widening and flattening the radio-frequency spectrum. Experimental results show that laser chaos with a 3-dB bandwidth of 24 GHz can be obtained at a feedback strength of 1.60, which is three times the bandwidth at a feedback strength of 0.35. Effects of the dispersive feedback strength and the wavelength detuning between the laser and the CFBG on the 3-dB bandwidth are studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.