Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus with worldwide distribution. PDCoV belongs to the Deltacoronavirus (DCoV) genus, which mainly includes avian coronaviruses (CoVs). PDCoV has the potential to infect human and chicken cells in vitro, and also has limited infectivity in calves. However, the origin of PDCoV in pigs, the host range, and cross-species infection of PDCoV still remain unclear. To determine whether PDCoV really has the ability to infect chickens in vivo, the three lines of chicken embryos and specific pathogen free (SPF) chickens were inoculated with PDCoV HNZK-02 strain to investigate PDCoV infection in the current study. Our results indicated that PDCoV can infect chicken embryos and could be continuously passaged on them. Furthermore, we observed that PDCoV-inoculated chickens showed mild diarrhea symptoms and low fecal viral RNA shedding. PDCoV RNA could also be detected in multiple organs (lung, kidney, jejunum, cecum, and rectum) and intestinal contents of PDCoV-inoculated chickens until 17 day post-inoculation by real-time quantitative PCR (qRT-PCR). A histology analysis indicated that PDCoV caused mild lesions in the lung, kidney, and intestinal tissues. These results prove the susceptibility of chickens to PDCoV infection, which might provide more insight about the cross-species transmission of PDCoV.
A B S T R A C TPorcine deltacoronavirus (PDCoV) is a novel porcine enteric coronavirus that causes diarrhea, vomiting and dehydration in piglets. This newly virus has spread rapidly and has caused serious economic losses for pig industry since the outbreak in USA in 2014. In this study, 430 faecal and intestinal samples (143 faecal samples and 287 intestinal samples) were collected from individual pigs with diarrhea and 211 serum samples were also collected from the sows with mild diarrhea in 17 regions in Henan province, China from April 2015 to March 2018. The RT-PCR detection indicated that the infection of PDCoV was high up to 23.49% (101/430), and coinfection with PEDV were common (60.40%, 61/101) in Henan pigs. The prevalence of PDCoV in suckling piglets was the highest (36.43%, 94/258). We also found that PDCoV could be detected in sows faeces and sera while the sows showed mild, self-limited diarrhea in clinic. The complete genomes of 4 PDCoV Henan strains (CH-01, HNZK-02, HNZK-04, HNZK-06) were sequenced and analyzed. Phylogenetic analysis based on the complete genome, spike and nucleocapsid gene sequences revealed that the PDCoV Henan strains were closely related to other PDCoV reference strains that located in the Chinese clade. Furthermore, the phylogenetic analysis showed PDCoV CH-01 strain was closely related to CHN-HB-2014 strain and HKU15-44 strain, while the other PDCoV Henan strains were more related to PDCoV CHJXNI2 and CH-SXD1-2015 strains, indicating that the ancestor of these sequenced strains may different. These results would support the understanding of the prevalence and evolution characteristics of PDCoV in China.
Topoisomerases are required for alleviating supercoiling of DNA during transcription and replication. Recent evidence suggests that supercoiling of bacterial DNA can affect bacterial pathogenicity. To understand the potential regulatory role of a topoisomerase I (TopA) in Pseudomonas aeruginosa, we investigated a previously isolated topA mutation using genetic approaches. We here report the effects of the altered topoisomerase in P. aeruginosa on type III secretion system, antibiotic susceptibility, biofilm initiation, and pyocyanin production. We found that topA was essential in P. aeruginosa, but a transposon mutant lacking the 13 amino acid residues at the C-terminal of the TopA and a mutant, named topA-RM, in which topA was split into three fragments were viable. The reduced T3SS expression in topA-RM seemed to be directly related to TopA functionality, but not to DNA supercoiling. The drastically increased pyocyanin production in the mutant was a result of up-regulation of the pyocyanin related genes, and the regulation was mediated through the transcriptional regulator PrtN, which is known to regulate bacteriocin. The well-established regulatory pathway, quorum sensing, was unexpectedly not involved in the increased pyocyanin synthesis. Our results demonstrated the unique roles of TopA in T3SS activity, antibiotic susceptibility, initial biofilm formation, and secondary metabolite production, and revealed previously unknown regulatory pathways.
In 2016 and 2018, two porcine deltacoronavirus (PDCoV) strains, CH-01 and HNZK-02, were identified from fecal samples of piglets with diarrhea in Henan Province, China. The full-length genomic sequence analysis indicated that these two strains had high nucleotide identities with the other Chinese PDCoV epidemic strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.