In order to solve the optimization problem of wet waste collection and transportation in Chinese cities, this paper constructs a chance-constrained low-carbon vehicle routing problem (CCLCVRP) model in waste management system and applies certain algorithms to solve the model. Considering the environmental protection point of view, the CCLCVRP model combines carbon emission costs with traditional waste management costs under the scenario of application of smart bins. Taking into the uncertainty of the waste generation rate, chance-constrained programming is applied to transform the uncertain model to a certain one. The initial optimal solution of this model is obtained by a proposed hybrid algorithm, that is, particle swarm optimization (PSO); and then the further optimized solution is obtained by simulated annealing (SA) algorithm, due to its global optimization capability. The effectiveness of PSOSA algorithm is verified by the classic database in a capacitated vehicle routing problem (CVRP). What’s more, a case of waste collection and transportation is applied in the model for acquiring reliable conclusions, and the application of the model is tested by setting different waste fill levels (WFLs) and credibility levels. The results show that total costs rise with the increase of credibility level reflecting dispatcher’s risk preference; the WFL value range between 0.65 and 0.75 can obtain the optimal solution under different credibility levels. Finally, according to these results, some constructive proposals are propounded for the government and the logistics organization dealing with waste collection and transportation.
Sustainable management of municipal solid waste (MSW) collection has been of increasing concern in terms of its economic, environmental, and social impacts in recent years. Current literature frequently studies economic and environmental dimensions, but rarely focuses on social aspects, let alone an analysis of the combination of the three abovementioned aspects. This paper considers the three benefits simultaneously, aiming at facilitating decision-making for a comprehensive solution to the capacitated vehicle routing problem in the MSW collection system, where the number and location of vehicles, depots, and disposal facilities are predetermined beforehand. Besides the traditional concerns of economic costs, this paper considers environmental issues correlated to the carbon emissions generated from burning fossil fuels, and evaluates social benefits by penalty costs which are derived from imbalanced trip assignments for disposal facilities. Then, the optimization model is proposed to minimize system costs composed of fixed costs of vehicles, fuel consumption costs, carbon emissions costs, and penalty costs. Two meta-heuristic algorithms, particle swarm optimization (PSO) and tabu search (TS), are adopted for a two-phase algorithm to obtain an efficient solution for the proposed model. A balanced solution is acquired and the results suggest a compromise between economic, environmental, and social benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.