Endocan is a novel human endothelial cell specific molecule. Its expression is regulated by cytokines and vascular endothelial growth factor (VEGF). The distribution of endocan in normal human tissues, however, remains unclear. We examined the expression of endocan in normal human tissue using immunohistochemical stains. Endocan was expressed in actively proliferative or neogeneic tissues and cells such as glandular tissues, endothelium of neovasculature, bronchial epithelium, germinal centers of lymph nodes etc. Endocan was not present in silent or resting tissues or cells such as endothelium of great arteries and spleen etc. Our findings suggest that endocan may act as a marker for angiogenesis or oncogenesis and could be regarded as a candidate gene for inflammatory tissue, neoplasia, tumor development and metastasis. The expression level of endocan may assist early diagnosis and prognosis of some tumors.
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by the IRBP concentration, while the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC 50 of 40 μmol/L.The vertebrate cells responsible for vision are the rod and cone photoreceptors of the retina that convert incoming light to an electrical signal. This conversion takes place in the photoreceptor outer segments, which are full of membrane disks containing the visual pigment, and, in a physiologically important arrangement, are enveloped by the retinal pigment epithelium (RPE). The visual pigment is composed of a chromophore, 11-cis retinal, attached to an integral membrane protein, opsin. The detection of light begins with the absorption of incoming photons by the visual pigment. An absorbed photon isomerizes the chromophore † Supported by NIH/NEI grants EY14850 (YK), EY04939 (RKC) , NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript moiety from 11-cis to all-trans bringing about a conformational change that initiates a cascade of reactions culminating in membrane potential change. The recovery of the cell from light involves the deactivation of the intermediates activated by light, and the reestablishment of membrane potential (1,2). However, the isomerized chromophore, all-trans retinal, remains. For vision to be possible, it is essential that the visual pigment regenerate: that is, the alltrans retinal has to be removed, and fresh 11-cis retinal has to be provided to combine with opsin and reform the visual pigment. The reactions regenerating the pigment are known as the Visual Cycle (3-5).In the case of the rod photoreceptors, t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.