The flotation of fine mineral particles is always a difficult problem. The flotation of fine arsenopyrite particles (−20 μm) in a sodium butyl xanthate (SBX) system was studied by using polyethyleneimine (PEI) as a flocculant. The flocculation properties of PEI on fine arsenopyrite were studied using sedimentation tests. The results showed that the optimum pH for the sedimentation of PEI was approximately 7.5; the higher the molecular weight (M.W.) of the flocculant, the better the sedimentation effect. In the flotation experiments, it was found that the flotation recovery of PEI-3 with high M.W. as flocculant was only 57%, while the flotation recovery of PEI-2 with medium M.W. was 90% under respective optimum conditions. The contact angle tests showed that the natural contact angle of arsenopyrite was 37°; the addition of moderate PEI-2 had a slightly negative influence on the hydrophobicity of arsenopyrite in the SBX system. From the size analysis results, the maximum particle size (D100) and median size (D50) of the arsenopyrite increased from 20 and 11 μm to 48 and 28 μm after treatment with 40 mg/L PEI-2, a size more conducive to bubble capture. From the combination of these results, it can be concluded that PEI-2 improved the flotation of fine arsenopyrite mainly by increasing the particle size to a suitable range through flocculation. The XPS results indicated that the adsorption of PEI-2 on the arsenopyrite surface was due to the chemisorption between the imino group and the active Fe/As sites. Applying PEI-2 to a fine disseminated arsenopyrite-type gold ore, a concentrate containing 36 g/t Au with a Au recovery of 88% can be obtained.
Effective flotation of fine particles is a problem for mineral processing. In this paper, a flocculant mostly used in heavy metal ion treatment was used in an arsenopyrite flotation system. The adsorption behavior and flotation performance of PEI on the xanthate flotation of arsenopyrite were investigated through zeta potential and adsorbed amount measurements, XPS and size distribution detections, and micro-flotation tests. Zeta potential results showed that the adsorption of 40 mg/L polyethyleneimine (PEI) caused an increase in the zeta potential of arsenopyrite, and had only a slight depression on the further adsorption of SBX, which was further confirmed by the results of the adsorbed amount measurements. However, when the dosage of PEI was 150 mg/L, the adsorption of SBX was strongly depressed. This was because moderate PEI only bridged different arsenopyrite particles, and most of the active sites for the SBX adsorption were still exposed; when PEI was in excess, the mineral particles would be covered so that there were not enough active sites for SBX adsorption. Fe and As on the mineral surface were the adsorption sites for the PEI molecules, which were resolved from the chemical shifts in the As/Fe peaks of the XPS spectra. PEI can increase particle size, and moderate PEI dosage can make the particle size suitable for flotation with SBX where bridging and hydrophobic effects take place. The flotation results showed that −20 μm arsenopyrite particles had poor flotation recovery with the SBX collector alone, but when they were treated with 40 mg/L PEI, the recovery largely increased. PEI can serve as an effective flocculant for the flocculation flotation of fine arsenopyrite. A comparison model, showing the possible interactions among reagents, particles, and bubbles in the pulp with different PEI dosages, is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.