In real-world applications, e.g. law enforcement and video retrieval, one often needs to search a certain person in long videos with just one portrait. This is much more challenging than the conventional settings for person re-identification, as the search may need to be carried out in the environments different from where the portrait was taken. In this paper, we aim to tackle this challenge and propose a novel framework, which takes into account the identity invariance along a tracklet, thus allowing person identities to be propagated via both the visual and the temporal links. We also develop a novel scheme called Progressive Propagation via Competitive Consensus, which significantly improves the reliability of the propagation process. To promote the study of person search, we construct a large-scale benchmark, which contains 127K manually annotated tracklets from 192 movies. Experiments show that our approach remarkably outperforms mainstream person re-id methods, raising the mAP from 42.16% to 62.27%. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.