MicroRNAs (miRNAs) have emerged as potential therapeutic targets for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH). Traditional Chineses Medicine (TCM) plays an important role in the prevention or treatment of NAFLD/NASH. However, miRNA targets of TCM against NASH still remain largely unknown. Here, we showed that Yiqi-Bushen-Tiaozhi (YBT) recipe effectively attenuated diet-induced NASH in C57BL/6 mice. To identify the miRNA targets of YBT and understand the potential underlying mechanisms, we performed network pharmacology using miRNA and mRNA deep sequencing data combined with Ingenuity Pathway Analysis (IPA). Mmu-let-7a-5p, mmu-let-7b-5p, mmu-let-7g-3p and mmu-miR-106b-3p were screened as the main targets of YBT. Our results suggested that YBT might alleviate NASH by regulating the expression of these miRNAs that potentially modulate inflammation/immunity and oxidative stress. This study provides useful information for guiding future studies on the mechanism of YBT against NASH by regulating miRNAs.
Homocysteine (C 4 H 9 NO 2 S) is a variant of the amino acid cysteine, a harmful substance to the human body, which is closely related to cardiovascular disease, senile dementia, fractures, et al. At present, conventional methods for detecting homocysteine in biological samples include high performance liquid chromatography (HPLC), fluorescence polarization immunoassay (FPIA), and enzymatic cycling methods. These methods have the disadvantages of being time-consuming, sample-losing, chemical reagent-using and operation-cumbersome. Here, we present a method for the quantitative detection of homocysteine in liquid based on terahertz spectroscopy. Considering the strong absorption of water for terahertz beam, we also put forward a pretreatment method for drying samples at low temperature. These methods make the detection limit for homocysteine reach 10 µmol/L (human normal concentration). Based on the linear relationship between the homocysteine concentration and the THz spectral intensity, we can successfully achieve quantitative, accurate and real-time detection of homocysteine. As compared to Raman spectroscopy, the correlation coefficient of THz spectrum (R 2 16.24THz = 0.99809) is much larger than that of the Raman spectrum (R 2 2558.26cm −1 = 0.80022, R 2 2937.32cm −1 = 0.8028). These results are greatly useful for the accurate evaluation of pathological stage.
Caffeine is an alkaloid and may be the most commonly ingested pharmacologically active substance in the world, but continuous abuse may lead to "caffeine poisoning". In this study, we propose a method for the qualitative and quantitative analysis of caffeine in various medicines using terahertz spectroscopy combined with chemometrics. By comparing this terahertz (THz) spectroscopy technology (Fourier transform infrared instrument, FTIR) with high performance liquid chromatography (HPLC) and Raman spectroscopy, we prove that there is less than a 5% difference between the THz and HPLC results, which is far superior to the nondestructive testing results obtained using Raman spectroscopy. In addition, the quantitative analysis of caffeine in 86 medicines was conducted using the support vector regression (SVR) chemometric method, and the correlation coefficient R achieves 99.61%. Therefore, we have effectively proven that THz spectroscopy technology combined with chemometric can achieve nondestructive, fast, and efficient qualitative and quantitative detection of key ingredients in medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.