Mercury pollution control has become a global goal. The accurate estimate of long-term mercury emissions in China is critical to evaluate the global mercury budget and the emission reduction potentials. In this study, we used a technology-based approach to compile a consistent series of China's atmospheric mercury emissions at provincial level from 1978 to 2014. China totally emitted 13 294 t of anthropogenic mercury to air during 1978-2014, in which gaseous elemental mercury, gaseous oxidized mercury, and particulate-bound mercury accounted for 58.2%, 37.1%, and 4.7%, respectively. The mercury removed during this period were 2085 t in coal-fired power plants (counting 49% of mercury input), 7259 t in Zn smelting (79%), 771 t in coal-fired industrial boilers (25%), and 658 t in cement production plants (27%), respectively. Annual mercury emissions increased from 147 t in 1978 to 530 t in 2014. Both sectoral and spatial emissions of atmospheric mercury experienced significant changes. The largest mercury emission source evolved from coal-fired industrial boilers before 1998, to zinc smelting during 1999-2004, coal-fired power plants during 2005-2008, finally to cement production after 2009. Coal-fired industrial boilers and cement production have become critical hotpots for China's mercury pollution control.
China took aggressive air pollution control measures from 2013 to 2017, leading to the mitigation of atmospheric mercury pollution as a cobenefit. This study is the first to systematically evaluate the effect of five major air pollution control measures in reducing mercury emissions, the total gaseous mercury (TGM) concentration and mercury deposition flux (FLX) for unit emissions reduction. From 2013 to 2017, China’s mercury emissions decreased from 571 to 444 tons, resulting in a 0.29 ng m–3 decrease in the TGM concentration, on average, and in a 17 μg m–2 yr–1 decrease in FLX. Ultralow emission renovations of coal-fired power plants are identified as the most effective emission abatement measure. As a result of this successful measure, coal-fired power plants are no longer the main mercury emitters. In 2017, the cement clinker sector became the largest emitter due to the use of less effective mercury removal measures. However, in terms of the mitigated TGM concentration and FLX levels per unit emission abatement, newly built wet flue gas desulfurization (WFGD) systems in coal-fired industrial boilers have become particularly effective in decreasing FLX levels. Therefore, to effectively reduce atmospheric mercury pollution in China, prioritizing mercury emissions control of cement clinkers and coal-fired industrial boilers is recommended.
Mercury (Hg) pollution control has become an urgent need at global and national scales. This study, for the first time, comprehensively examines Hg flows in Mainland China and uncovers domestic and external causal drivers of China's Hg emissions/releases. Results show that China's Hg input reaches 2643 t in 2010. China discharges 1368 t of Hg to the environment (to air, 633 t; water, 84 t; and land, 651 t). Embedded Hg transfers across production sectors via waste/byproduct flows reduce Hg releases to land, but lead to secondary Hg emissions to air. Such revelations of embedded Hg transfers adjusts China's comprehensive Hg control that would otherwise only tackle primary emitters. Domestic consumption causes 67% of China's Hg emissions/releases, and external consumption induces the remaining 33%. Besides traditional production-side Hg control measures, demand-side measures and international joint efforts are required to effectively combat Hg pollution. Uncovering embedded and embodied Hg flows within the global economy can assist a paradigm shift necessary to make real progress in global Hg control and the implementation of the Minamata Convention on Mercury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.