One of the fundamental properties of biological membranes is the asymmetric distribution of membrane lipids. In Gram-negative bacteria, the outer leaflet of the outer membrane is composed predominantly of lipopolysaccharides (LPS). The export of LPS requires seven essential lipopolysaccharide transport (Lpt) proteins to move LPS from the inner membrane, through the periplasm to the surface. Of the seven Lpt proteins, the LptD-LptE complex is responsible for inserting LPS into the external leaflet of the outer membrane. Here we report the crystal structure of the ∼110-kilodalton membrane protein complex LptD-LptE from Shigella flexneri at 2.4 Å resolution. The structure reveals an unprecedented two-protein plug-and-barrel architecture with LptE embedded into a 26-stranded β-barrel formed by LptD. Importantly, the secondary structures of the first two β-strands are distorted by two proline residues, weakening their interactions with neighbouring β-strands and creating a potential portal on the barrel wall that could allow lateral diffusion of LPS into the outer membrane. The crystal structure of the LptD-LptE complex opens the door to new antibiotic strategies targeting the bacterial outer membrane.
After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptBFG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptBFG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptBFG that is distinct from those of classical ABC transporters that transport substrates across the IM.
β‐barrel outer membrane proteins (β‐OMPs) play critical roles in nutrition acquisition, protein import/export, and other fundamental biological processes. The assembly of β‐OMPs in Gram‐negative bacteria is mediated by the β‐barrel assembly machinery (BAM) complex, yet its precise mechanism remains elusive. Here, we report two structures of the BAM complex in detergents and in nanodisks, and two crystal structures of the BAM complex with bound substrates. Structural analysis indicates that the membrane compositions surrounding the BAM complex could modulate its overall conformations, indicating low energy barriers between different conformational states and a highly dynamic nature of the BAM complex. Importantly, structures of the BAM complex with bound substrates and the related functional analysis show that the first β‐strand of the BamA β‐barrel (β1BamA) in the BAM complex is associated with the last but not the first β‐strand of a β‐OMP substrate via antiparallel β‐strand interactions. These observations are consistent with the β‐signal hypothesis during β‐OMP biogenesis, and suggest that the β1BamA strand in the BAM complex may interact with the last β‐strand of an incoming β‐OMP substrate upon their release from the chaperone‐bound state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.