BackgroundThe purpose of this study was to assess the feasibility and accuracy of sentinel lymph nodes (SLNs) detection using 99mTc phytate in predicting pelvic lymph nodes status for radical abdominal trachelectomy (RAT) in patients with early stage cervical cancer.MethodsSixty-eight women with stage IA2-IB1 cervical cancer and scheduled to undergo fertility-sparing surgery enrolled in this study. 99mTc-labeled phytate was injected before surgery. Intraoperatively, SLNs were identified, excised, and submitted to fast frozen section. Systematic bilateral pelvic lymphadenectomy and/or para-aortic lymph node dissection was performed. Then RAT was performed in patients with negative SLNs. All nodes were sent for routine pathological examination and immunostained with anti-cytokeratin antibody to detect micrometastases. Outcomes of follow up and fertility were observed.ResultsSLNs were identified in 64 of 68 patients (94.1%). Of these, SLNs of 8 patients (11.8%) were positive on frozen sections and proved to be metastasis by final pathologic examination. The sensitivity, accuracy, and false negative rates were 100%, 100%, and 0%, respectively. All 60 patients with negative SLN underwent RAT successfully. Two relapses occurred and no one died of tumor progression during follow-up. Five of the 15 patients with procreative desire conceived 8 pregnancies (3 term delivery, 2 premature birth, 1 spontaneous abortion, and 2 were still in the duration of pregnancy) after surgery.ConclusionsThe identification of SLN using 99mTc-labeled phytate is accurate and safe to assess pelvic nodes status in patients with early cervical cancer. SLNs biopsy guided RAT is feasible for patients who desire to have fertility preservation.
Photocatalytic synthesis of ammonia from N2 and H2O and its photodecomposition were investigated over SrTiO3 and BaTiO3 based catalysts. It was demonstrated that the yield of NH3 formation increased markedly by the use of RuO2 and NiO doped three component catalysts and that photodecomposition of NH3 was coupled with photodecomposition of H2O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.