Highlights d Lungs are generated in apneumic Fgf10-deficient mice by blastocyst complementation d Complementation with mouse ESCs enables Fgf10-deficient mice to survive to adulthood d The generated lung alveolar parenchyma largely originate from the injected mouse ESCs d The interstitial portions of the lung also largely originate from the injected mouse ESCs
The outcomes of tracheal transplantation for the treatment of airway stenosis are unsatisfactory. We investigated the feasibility of regeneration of the trachea using a rat decellularized tracheal scaffold and mouse-induced pluripotent stem (iPS) cells for in vivo transplantation. The rat trachea was first decellularized using a detergent/enzymatic treatment method. We successfully established a centrifugation method that can transplant cells onto the luminal surface of the decellularized rat tracheal scaffold circumferentially. Two types of mouse iPS cells were differentiated into definitive endoderm cells and transplanted onto the luminal surface of the decellularized tracheal matrix scaffold using this centrifugation method. For in vivo study, normal rat tracheas, no-cell rat tracheal scaffolds, or rat tracheal scaffolds recellularized with rat tracheal epithelial cells (EGV-4T) were orthotopically transplanted on F344 rats, and rat tracheal scaffolds recellularized with mouse iPS cells were transplanted on F344/NJc1-rnu/rnu rats. Rats transplanted with no-cell scaffolds or scaffolds recellularized with EGV-4T survived for 1 month, although airway stenosis was observed. One of the F344/NJc1-rnu/rnu rats transplanted with rat trachea regenerated using mouse iPS cells survived over 5 weeks. Histological analysis indicated the cause of death was airway stenosis due to colonic cellular proliferation of undifferentiated iPS cells. Re-epithelialization with numerous ciliated epithelial cells was observed in one of the rats transplanted with trachea bioengineered using iPS cells. In this study, we present a simple and efficient tracheal tissue engineering model using a centrifugation method in a small-animal model. Tissue-engineered trachea using decellularized tracheal scaffolds and iPS cells is potentially applicable for tracheal transplantation.
The generation of mature, functional, thyroid follicular cells from pluripotent stem cells would potentially provide a therapeutic benefit for patients with hypothyroidism, but in vitro differentiation remains difficult. We earlier reported the in vivo generation of lung organs via blastocyst complementation in fibroblast growth factor 10 (Fgf10), compound, heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice. Fgf10 also plays an essential role in thyroid development and branching morphogenesis, but any role thereof in thyroid organogenesis remains unclear. Here, we report that the thyroids of Fgf10 Ex1mut/Ex3mut mice exhibit severe hypoplasia, and we generate thyroid tissues from mouse embryonic stem cells (ESCs) in Fgf10 Ex1mut/Ex3mut mice via blastocyst complementation. The tissues were morphologically normal and physiologically functional. The thyroid follicular cells of Fgf10 Ex1mut/Ex3mut chimeric mice were derived largely from GFP-positive mouse ESCs although the recipient cells were mixed. Thyroid generation in vivo via blastocyst complementation will aid functional thyroid regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.