Scarcity of annotated images hampers the building of automated solution for reliable COVID-19 diagnosis and evaluation from CT. To alleviate the burden of data annotation, we herein present a label-free approach for segmenting COVID-19 lesions in CT via voxel-level anomaly modeling that mines out the relevant knowledge from normal CT lung scans. Our modeling is inspired by the observation that the parts of tracheae and vessels, which lay in the high-intensity range where lesions belong to, exhibit strong patterns. To facilitate the learning of such patterns at a voxel level, we synthesize 'lesions' using a set of simple operations and insert the synthesized 'lesions' into normal CT lung scans to form training pairs, from which we learn a normalcy-recognizing network (NormNet) that recognizes normal tissues and separate them from possible COVID-19 lesions. Our experiments on three different public datasets validate the effectiveness of NormNet, which conspicuously outperforms a variety of unsupervised anomaly detection (UAD) methods.
Fully convolutional neural networks like U-Net have been the state-of-the-art methods in medical image segmentation. Practically, a network is highly specialized and trained separately for each segmentation task. Instead of a collection of multiple models, it is highly desirable to learn a universal data representation for different tasks, ideally a single model with the addition of a minimal number of parameters steered to each task. Inspired by the recent success of multi-domain learning in image classification, for the first time we explore a promising universal architecture that handles multiple medical segmentation tasks and is extendable for new tasks, regardless of different organs and imaging modalities. Our 3D Universal U-Net (3D U 2 -Net) is built upon separable convolution, assuming that images from different domains have domain-specific spatial correlations which can be probed with channelwise convolution while also share cross-channel correlations which can be modeled with pointwise convolution. We evaluate the 3D U 2 -Net on five organ segmentation datasets. Experimental results show that this universal network is capable of competing with traditional models in terms of segmentation accuracy, while requiring only about 1% of the parameters. Additionally, we observe that the architecture can be easily and effectively adapted to a new domain without sacrificing performance in the domains used to learn the shared parameterization of the universal network. We put the code of 3D U 2 -Net into public domain. 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.