Sustainably feeding the growing population in China attracts attention globally.Despite practices success, producing enough food to simultaneously address resource and pollution problems has been infeasible. To assess how to achieve this goal in 2035, we created a pathway that synergistic combining improved managements and cropland redistribution based on 11.1 million farmer surveys and 4,272 georeferenced field observations. Here, we firstly selected the practices of top 10% performers in crop yield and nitrogen (N) efficiency as crop-specific attainable improved managements at the county level. The optimized crop distribution within improved managements was then performed to minimize inputs (N and phosphorus fertilizer, irrigation water) or environmental impacts (reactive N [Nr] loss and greenhouse gas[GHG] emissions). We identified that combing improved managements and cropland redistribution could produce enough food demands in 2035, with 24% more production compared to 2012. It also reduced the inputs and environmental impacts in a range of 19%-35%, mainly sourced from the central and eastern coastal areas by improved productivity and diminished cropland of fruit and vegetables. These findings highlight the necessity for a synergistic combination of measures to sustainably feed the growing population and establish a more realistic and effective policy.
Sustainably feeding the growing population amid a changing climate and dwindling resources is a grand challenge facing mankind. Decades‐long advancement in crop breeding has progressively elevated yield potential, markedly enhancing global food production capacity. However, relevant impact on reactive N (Nr) emissions associated with crop variety improvement has not been explicitly described. Here, we report multitiered evidence that newer and select maize, wheat, and rice varieties developed in China have the capacity to substantially lower Nr losses while producing more grain. First, we pooled studies featuring side‐by‐side comparison of different varieties, totaling 269 paired observations, to demonstrate that collectively, relatively newer varieties of maize, wheat, and rice had less Nr emissions (9.6%–23.5%) while yielding more grains (7.3%–11.2%) compared to older varieties under wide‐ranging conditions. Next, we built an extended database (142 field studies with 833 observations) and comprehensively evaluated the Nr‐loss reduction potential of newer varieties (2000 and after) versus older ones (1985–1999). We found that newer varieties had Nr emission factors (N loss as a percentage of N applied after correcting for background emissions) 18.2%–75.7% less for N2O, 18.3%–75.7% less for NO3-, and −8.5% to 22.8% less for NH3, while producing more grains (16.0%–24.4%). Individual varieties differed markedly in yield‐emission scores. A nationwide farmer survey (2.47 million responses) indicated tremendous opportunities for a new way of management intervention. Coupling variety selection with sound N and other agronomic management can help lower N footprint while producing more grain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.