Whispering-gallery-mode (WGM) cavity is important for exploring physics of strong light-matter interaction. Yet it suffers from the notorious radiation loss universally due to the light tunneling effect through the curved boundary. In this work, we propose and demonstrate an optical black hole (OBH) cavity based on transformation optics. The radiation loss of all WGMs in the ideal OBH cavity is completely inhibited by an infinite wide potential barrier. Besides, the WGM field in the OBH cladding is revealed to follow $$1/r^\alpha$$ 1 / r α decay rule based on conformal mapping, which is fundamentally different from the conventional Hankel-function distributions in a homogeneous cavity. Experimentally, a truncated OBH cavity is achieved based on the effective medium theory, and both the Q-factor enhancement and tightly confined WGM fields are measured in the microwave spectra which agree well with the theoretical results. The circular OBH cavity is further applied to the arbitrary-shaped cavities including single-core and multi-core structures with high-Q factor via the conformal mapping. The OBH cavity design strategy can be generalized to resonant modes of various wave systems, such as acoustic and elastic waves, and finds applications in energy harvesting and optoelectronics.
In this work, we demonstrate the implementation of a nonreciprocal perfect absorber (NPA) made of composite magnetic metamaterials (MMs) consisting of an array of dielectric core loaded (DCL) ferrite rods with either hollow or dielectric cores. The NPA can be functionalized as a PA for the incident beam at a specified direction, while at the symmetric direction the absorption is very weak so that a strong reflection is observed due to the excitation of nonreciprocal magnetic surface plasmon. Interestingly, it is shown that the material loss might be beneficial to the absorption, but it will result in the degradation of nonreciprocal performance. For the delicately designed MMs, only a very small material loss is necessary and simultaneously ensures the high nonreciprocal performance of NPA. To interpret the high quality of NPA, we developed a generalized effective-medium theory for the composite MMs, which shows the direct consequence of the DCL ferrite rods with optimized core size and core permittivity. The partial wave analysis indicates that the nonreciprocal dipole resonance in DCL ferrite rod plays a crucial role in improving the nonreciprocity. The narrow band feature and the angular sensitivity make the NPA promising for the diode-like functionalities. In addition, by controlling the magnitude and orientation of bias magnetic field both the operating frequency and the nonreciprocity can be flexibly controlled, adding an additional degree of freedom. The concept proposed in this research is promising for microwave photonics and integrated photonics.
We demonstrate reconfigurable unidirectional propagation of electromagnetic waves in waveguide channels sandwiched by two dielectric photonic crystal (PC) slabs or magnetic PC (MPC) slabs, where the extrinsic and intrinsic responses emerge in two kinds of systems. Concretely, the unidirectionality of the MPC system originates from the time-reversal symmetry breaking nature of magnetic material, while in the dielectric PC system, the unidirectionality is achieved by active control of two separated line sources. The results indicate that in the MPC based system, not only the amplitude but also the directionality of the guiding electromagnetic waves is flexibly regulated by controlling the separation and phase difference of two active line sources. However, the directionality in the MPC based system is determined by the magnetization due to the intrinsic unidirectionality of the magnetic system, but for the dielectric PC based system, directionality is controlled by active sources. The introduction of a second line source in the MPC based system can result in two remarkably different consequences. On one hand, the directionality can be switched from forward to backward propagation by reversing magnetization. On the other hand, the same operation results in the transition from unidirectional propagation to localization of the electromagnetic waves by dynamically controlling two active sources. The functionality and flexibility in the present systems might find potential applications in microwave photonics and integrated photonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.