We had shown previously that progression of MOPC-315 plasmacytoma growth is associated with an increase in the percentage of macrophages in the spleen as well as a decrease in the ability of tumor-bearer spleen cells to mount an antitumor cytotoxic response upon in vitro immunization. Here we provide evidence that macrophages in the MOPC-315 tumor-bearer spleen are responsible at least in part for the suppression of the generation of antitumor cytotoxicity. Accordingly, removal of most macrophages by depletion of phagocytic cells or Sephadex G-10-adherent cells from spleens of mice bearing a large tumor resulted in augmented antitumor immune potential. Also, Sephadex G-10-adherent spleen cells from tumor-bearing (but not normal) mice drastically suppressed the in vitro generation of antitumor cytotoxicity by normal spleen cells. The suppressive activity of these adherent cells did not reside in contaminating suppressor T cells, since it was not reduced by treatment with monoclonal anti-Thy 1.2 antibody plus complement. The Sephadex G-10-adherent cell population from the tumor-bearer spleen suppressed the in vitro generation of antitumor cytotoxicity against autochthonous tumor cells but not against allogeneic EL4 tumor cells, and hence the suppression was apparently specific. The suppressive activity of the Sephadex G-10-adherent cell population from tumor-bearer spleens was overcome by treatment of the tumor-bearing mice with a low curative dose of cyclophosphamide. This immunomodulatory effect of a low dose of the drug in overcoming the suppression mediated by the Sephadex G-10-adherent cell population enables the effector arm of the immune system of tumor-bearing mice to cooperate effectively with the drug's tumoricidal activity in tumor eradication.
We investigate the problem of target tracking using a wireless sensor network with asynchronous sensors. To study the impact of sensor clock imperfection on target tracking in practical situations, we build a testbed and collect data from an outdoor experiment. After analyzing the collected data, we find that the TDOA (time-difference-of-arrival) and FDOA (frequency-difference-of-arrival) measurements have notable bias, which is caused by asynchronous sensors or more precisely by the sensor clock drift. Based on the model of clock drift, the measurement bias and the target position are integrated into a state-space model. Both can be estimated in the framework of the extend Kalman filter. In some circumstance, the target trajectory is tracked successfully.
Abstract-For the nonlinear vibration signal of stayed cables, a new particle filter algorithm is used in this paper. Firstly, nonlinear dynamic model of the stayed-cable and beam coupling system is dispersed in temporal dimension by using the finite difference method. So the discrete nonlinear vibration equation of any cable element is gotten. And secondly, a state equation of particle filter is fitted by least square algorithm from the discrete nonlinear vibration equation. So the particle filter algorithm can use the accurate state equations. Finally, the particle filter algorithm is used to filter the vibration signal of bridge stayed cable. The vibration signal is de-noised. And from the particle filter, the vibration signal can be tracked and be predicted for a short time accurately. The simulation experiments and the actual experiments on the bridge stayed cable are all indicating that the particle filter algorithm in this paper has good performance and works stably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.