Background Increased evidence has reported the association of genetic polymorphisms of Apolipoprotein E (APOE) with serum lipids. However, few studies have explored the combined effects of APOE, gender, and age. Methods A total of 1,419 middle-aged and elderly subjects were randomly selected and studied. The APOE genotypes and the serum lipids were detected. The effects of APOE, gender, and age on serum lipids were preliminarily observed in general. The subjects were then divided into the middle-aged group (40–64 years old) and the elderly group (≥ 65 years old), for both males and females, to explore the combined effects of the APOE, gender, and age on serum lipids. Finally, a multivariate logistic regression model was used to evaluate the associations between the APOE allele carriers and the at-risk levels of dyslipidemia. Results The serum TC, LDL-C, and ApoB in the ε2 carriers were lower than the ε3 carriers (all P < 0.05), and there was no significant difference in the ε4 carriers compared to the ε3 carriers in general (all P > 0.05). The serum LDL-C and ApoB of the ε2 carriers were lower than the noncarriers in the middle-aged and elderly males (all P < 0.05). The serum TC in the ε2 carriers was lower than the noncarriers only in middle-aged males (P < 0.05). As to the levels of serum HDL-C and ApoA1, the ε2 carriers were higher than the noncarriers in middle-aged females (all P < 0.05), and the ε4 carriers were lower than noncarriers in middle-aged males (P < 0.05). Especially, the serum TG in the ε4 carriers was significantly higher than the noncarriers in elderly females. The logistic regression analysis indicated that the ε2 carriers were less likely to have at-risk levels of high LDL-C in middle-aged and elderly males (all P < 0.05) versus low HDL-C in middle-aged females (P < 0.05). In contrast, the ε4 carriers were more likely to have at-risk levels of high TG in elderly females (P < 0.05). Conclusions The effects of the genetic polymorphisms of APOE on the serum lipids were both gender- and age-dependent in the middle-aged and elderly Chinese Fujian Han population.
BackgroundAnti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is the most common type of autoimmune encephalitis. Early recognition and treatment, especially distinguishing from viral encephalitis (VE) in the early stages, are crucial for the outcomes of patients with anti-NMDAR encephalitis. Compared with plasma microRNAs (miRNAs), exosomal miRNAs are more abundant and not easy to degrade. Moreover, exosomes can pass through the blood–brain barrier. This study aimed to explore the clinical value of serum exosomal miRNAs in the differential diagnosis of anti-NMDAR encephalitis with VE.MethodSerum samples from a total of 30 patients with anti-NMDAR encephalitis, 30 patients with VE, and 30 cases of control patients hospitalized in the same period were collected. Firstly, the serum exosomes were isolated and identified by transmission electron microscope (TEM), nanoparticle-tracking analyzer (NTA), and Western blot (WB). The expression levels of let-7b and miR-140-5p from serum exosomes were detected by real-time quantitative PCR (qPCR). At the same time, we also detected complement 3 (C3), complement 4 (C4), and high sensitivity CRP (hs-CRP) expression levels in three groups. Finally, we analyzed the difference and diagnostic value of the test results.ResultsIsolated particles showed identical characteristics to the exosomes through TEM, NTA, and WB analyses. Compared with the VE group and control group, the expression of miR-140-5p was significantly upregulated in serum exosomes of the NMDAR group. In contrast, the serum C3 in the NMDAR group was significantly lower than the other two groups. ROC curve analysis showed the area under the curve (AUC) of serum exosomal miR-140-5p and serum C3 was 0.748 (76.67% sensitivity and 73.33% specificity) and 0.724 (76.67% sensitivity and 60% specificity) to distinguish anti-NMDAR encephalitis from VE, respectively. The AUC of serum exosomal miR-140-5p combined with serum C3 was 0.811, the sensitivity was 70.00%, and the specificity was 86.67%.ConclusionSerum exosomal miR-140-5p combined with serum C3 would be a promising marker in the differential diagnosis of anti-NMDAR encephalitis with VE.
Metabolic inflammatory damage, characterized by Toll-like receptor 4 (TLR4) signaling activation, is a major mechanism underlying lipotoxicity-induced β-cell damage. The present study is aimed at determining whether G protein-coupled receptor 4 (GPR40) agonist can improve β-cell lipotoxicity-induced damage by inhibiting the TLR4-NF-κB pathway. Lipotoxicity, inflammation-damaged β-cells, obese SD, and TLR4KO rat models were used in the study. In vitro, TAK-875 inhibited the lipotoxicity- and LPS-induced β-cell apoptosis in a concentration-dependent manner, improved the insulin secretion, and inhibited the expression of TLR4 and NF-κB subunit P65. Besides, silencing of TLR4 expression enhanced the protective effects of TAK-875, while TLR4 overexpression attenuated this protective effect. Activation of TLR4 or NF-κB attenuated the antagonism of TAK-875 on PA-induced damage. Moreover, the above process of TAK-875 was partially independent of GPR40 expression. TAK-875 reduced the body weight and inflammatory factors, rebalanced the number and distribution of α or β-cells, inhibited the apoptosis of islet cells, and inhibited the expression of TLR4 and NF-κB subunit P65 in obese rats. Further knockout of the rat TLR4 gene delayed the damage induced by the high-fat diet and synergy with the action of TAK-875. These data suggest that GPR40 agonists antagonized the lipotoxicity β-cell damage by inhibiting the TLR4-NF-κB pathway.
Background The early differential diagnosis between bacterial meningitis (BM) and tuberculous meningitis (TBM) or cryptococcal meningitis (CM) is still an important clinical challenge. Neutrophil Gelatinase-Associated Lipocalin (NGAL) had been reported as a novel inflammatory biomarker in early stage of infection. This study aimed to explore whether cerebrospinal fluid (CSF) NGAL is a potential biomarker for distinguishing between BM and TBM or CM. Methods Prospectively enrolled the patients with suspected CNS infections at admission and divided them into three case groups: BM (n = 67), TBM (n = 55), CM (n = 51), and an age- and sex-matched hospitalized control (HC, n = 58). Detect the CSF NGAL and evaluate the diagnostic accuracy to distinguish between BM and TBM or CM. Meanwhile, longitudinally measured the CSF NGAL of BM to evaluate whether it would be a monitor of antibacterial treatment. Results The CSF NGAL in BM was significantly higher than in TBM, CM and HC (all P < 0.05), while the serum NGAL was not significantly different among the three case groups. The ROC analysis showed CSF NGAL presented a good diagnostic performance with an AUC of 0.834 (0.770 to 0.886) and at the optimal cutoff value of 74.27 ng/mL with 70.15% sensitivity and 77.36% specificity for discriminating BM with TBM and CM. Meanwhile, the CSF NGAL in the convalescent period of BM was significantly lower than the acute period (P < 0.05). Conclusions CSF NGAL might be a potential biomarker for distinguishing between acute BM and TBM or CM, and it also has some important clinical value for monitoring antibiotic therapy for BM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.