SummaryGenome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial.Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA).The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude.Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.
The air quality in Beijing, especially its PM2.5 level, has become of increasing public concern because of its importance and sensitivity related to health risks. A set of monitored PM2.5 data from 31 stations, released for the first time by the Beijing Environmental Protection Bureau, covering 37 days during autumn 2012, was processed using spatial interpolation and overlay analysis. Following analyses of these data, a distribution map of cumulative exceedance days of PM2.5 and a temporal variation map of PM2.5 for Beijing have been drawn. Computational and analytical results show periodic and directional trends of PM2.5 spreading and congregating in space, which reveals the regulation of PM2.5 overexposure on a discontinuous medium-term scale. With regard to the cumulative effect of PM2.5 on the human body, the harm from lower intensity overexposure in the medium term, and higher overexposure in the short term, are both obvious. Therefore, data of population distribution were integrated into the aforementioned PM2.5 spatial spectrum map. A spatial statistical analysis revealed the patterns of PM2.5 gross exposure and exposure probability of residents in the Beijing urban area. The methods and conclusions of this research reveal relationships between long-term overexposure to PM2.5 and people living in high-exposure areas of Beijing, during the autumn of 2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.