We performed a genome-wide association study (GWAS) of systemic lupus erythematosus (SLE) in a Chinese Han population by genotyping 1,047 cases and 1,205 controls using Illumina Human610-Quad BeadChips and replicating 78 SNPs in two additional cohorts (3,152 cases and 7,050 controls). We identified nine new susceptibility loci (ETS1, IKZF1, RASGRP3, SLC15A4, TNIP1, 7q11.23, 10q11.22, 11q23.3 and 16p11.2; 1.77 x 10(-25) < or = P(combined) < or = 2.77 x 10(-8)) and confirmed seven previously reported loci (BLK, IRF5, STAT4, TNFAIP3, TNFSF4, 6q21 and 22q11.21; 5.17 x 10(-42) < or = P(combined) < or = 5.18 x 10(-12)). Comparison with previous GWAS findings highlighted the genetic heterogeneity of SLE susceptibility between Chinese Han and European populations. This study not only advances our understanding of the genetic basis of SLE but also highlights the value of performing GWAS in diverse ancestral populations.
A dynamic gel composed of cellulose, ionic liquids, and H 2 O with reversible Turing-pattern microstructures is realized via the construction of a switchable hydrogen-bond topological network. The dynamic gel exhibits diverse tunable, reversible properties including mechanical strength and toughness, viscoelasticity, self-healing, and ionic conductivity. These dynamic features can be facilely tuned through changing the water content in the gel material. The flexible, transparent, and designable dynamic gel material shows great potential in electronic skin and smart devices.
Recent improvements in flexible electronics have increased the need to develop flexible and lightweight power sources. However, current flexible electrodes are limited by low capacitance, poor mechanical properties, and lack of cycling stability. In this article, we describe an ionic liquid-processed supramolecular assembly of cellulose and 3,4-ethylenedioxythiophene for the formation of a flexible and conductive cellulose/poly(3,4-ethylenedioxythiophene) PEDOT:poly(styrene sulfonate) (PSS) composite matrix. On this base, multiwalled carbon nanotubes (MWCNTs) were incorporated into the matrix to fabricate an MWCNT-reinforced cellulose/PEDOT:PSS film (MCPP), which exhibited favorable flexibility and conductivity. The MCPP-based electrode displayed comprehensively excellent electrochemical properties, such as a low resistance of 0.45 Ω, a high specific capacitance of 485 F g at 1 A g, and good cycling stability, with a capacity retention of 95% after 2000 cycles at 2 A g. An MCPP-based symmetric solid-state supercapacitor with Ni foam as the current collector and PVA/KOH gel as the electrolyte exhibited a specific capacitance of 380 F g at 0.25 A g and achieved a maximum energy density of 13.2 Wh kg (0.25 A g) with a power density of 0.126 kW kg or an energy density of 4.86 Wh kg at 10 A g, corresponding to a high power density of 4.99 kW kg. Another kind of MCPP-based solid-state supercapacitor without the Ni foam showed excellent flexibility and a high volumetric capacitance of 50.4 F cm at 0.05 A cm. Both the electrodes and the supercapacitors were environmentally stable and could be operated under remarkable deformation or high temperature without damage to their structural integrity or a significant decrease in capacitive performance. Overall, this work provides a strategy for the fabrication of flexible and conductive energy-storage films with ionic liquid-processed cellulose as a medium.
Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.