Background: In our previous research, we found that mesenchymal stem cell (MSC) transplantation therapy can inhibit intimal hyperplasia and enhance endothelial function in arterialized vein grafts in rats. However, whether MSC-derived exosomes (MSC-exosomes) can reduce neointimal formation and its possible mechanism is still unclear.Methods: The primary human umbilical cord MSCs (hucMSCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry and immunofluorescence. The exosomes derived from hucMSCs (hucMSC-exosomes) were identified by transmission electron microscopy and western blots. hucMSC-exosomes were intravenously injected into a rat model of vein grafting, and its effect on vein grafts reendothelialization and intimal hyperplasia was assessed by physical, histological, immunohistochemistry, and immunofluorescence examinations. The effects of hucMSC-exosomes on endothelial cells were evaluated by integrated experiment, EdU staining, scratch assay, and Transwell assay. The expression levels of key gene and pathways associated with the biological activity of vascular endothelial cells were evaluated following the stimulation of hucMSC-exosomes. Results: We successfully isolated and characterized primary hucMSCs and hucMSC-exosomes and primary HUVECs. We verified that the systemic administration of hucMSC-exosomes accelerates reendothelialization and decreases intimal hyperplasia of autologous vein graft in a rat model. We also identified that hucMSC-exosomes can be uptaken by endothelial cells to stimulate cell proliferative and migratory activity in vitro. Furthermore, we detected that vascular endothelial growth factor (VEGF) plays an important part in hucMSC-exosome-mediated proliferation and migration in HUVECs. In addition, we also provided evidence that the signalling pathways of PI3K/AKT and MAPK/ERK1/2 take part in hucMSC-exosome-induced VEGF regulation.(Continued on next page) Conclusion: Our data suggest that hucMSC-exosomes exert a vasculoprotective role in the setting of vein graft disease, which may provide a new clue to protect against vein graft failure in the future.
Poor long-term patency of vein grafts remains an obstacle in coronary artery bypass grafting (CABG) surgery using an autologous saphenous vein graft. Recent studies have revealed that miR-126-3p promotes vascular integrity and angiogenesis. We aimed to identify the role of miR-126-3p in the setting of vein graft disease and investigate the value of miR-126-3p agomir as a future gene therapy in vein graft failure. Expression analysis of circulating miR-126-3p in plasma from CABG patients established the basic clues that miR-126-3p participates in CABG. The in vitro results indicated that elevated miR-126-3p expression significantly improved proliferation and migration in human saphenous vein endothelial cells (HSVECs) by targeting sprouty-related protein-1 (SPRED-1) and phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2), but not in human saphenous vein smooth muscle cells (HSVSMCs). Moreover, the therapeutic potential of miR-126-3p agomir was demonstrated in cultured human saphenous vein (HSV) ex vivo. Finally, local delivery of miR-126-3p agomir was confirmed to enhance reendothelialization and attenuate neointimal formation in a rat vein arterialization model. In conclusion, we provide evidence that upregulation of miR-126-3p by agomir possesses potential clinical value in the prevention and treatment of autologous vein graft restenosis in CABG.
Background In our previous research, we found that overexpression of miR-126-3p in human umbilical cord MSCs (hucMSCs) promoted human umbilical vein endothelial cells angiogenic activities through exosome-mediated mechanisms. The present study aimed to investigate the role of miR-126-3p-modified hucMSCs derived exosomes (miR-126-3p-hucMSCs-exosomes) on the treatment of premature ovarian failure (POF). Methods Primary hucMSCs were isolated from human umbilical cords and identified by differentiation experiments and flow cytometry. miR-126-3p-hucMSCs were obtained by miR-126-3p lentivirus infection. miR-126-3p-hucMSCs-exosomes were purified by ultracentrifugation method and characterized by transmission electron microscopy and western blot analysis. Primary rat ovarian granulosa cells (OGCs) were collected from ovarian tissues and identified by cell immunohistochemistry. The effects of miR-126-3p-hucMSCs-exosomes and miR-126-3p on OGCs function were determined by cell proliferation and apoptosis assays in a cisplatin induced POF cell model. The levels of suitable target genes were analyzed by PCR and Western blot analysis and subsequent Dual-Luciferase reporter assay. The signal pathway was also analyzed by western blot analysis. A cisplatin-induced POF rat model was used to validate the therapeutic effects of miR-126-3p-hucMSCs-exosomes to treat POF. Ovarian function was evaluated by physical, enzyme-linked immunosorbent assay, and histological examinations in chemotherapy-treated rats. The angiogenesis and apoptosis of ovarian tissues were assessed by immunohistochemical staining and Western blots. Results Primary hucMSCs and miR-126-3p-hucMSCs-exosomes and primary rat OGCs were successfully isolated and identified. The cellular uptake experiments indicated that miR-126-3p-hucMSC-exosomes can be internalized into OGCs in vitro. Annexin V-FITC/PI staining and EDU assays revealed that both miR-126-3p-hucMSCs-exosomes and miR-126-3p promoted proliferation and inhibited apoptosis of OGCs damaged by cisplatin. PCR and western blot analysis and subsequent dual-luciferase reporter assay verified that miR-126-3p targets the sequence in the 3' untranslated region of PIK3R2 in OGCs. Further analysis showed that PI3K/AKT/mTOR signaling pathway took part in miR-126-3p/PIK3R2 mediated proliferation and apoptosis in OGCs. In rat POF model, administration of miR-126-3p-hucMSCs-exosomes increased E2 and AMH levels, increased body and reproductive organ weights and follicle counts, and reduced FSH levels. But more importantly, immunohistochemistry results indicated miR-126-3p-hucMSCs-exosomes significantly promoted ovarian angiogenesis and inhabited apoptosis in POF rats. Additionally, the analysis of angiogenic-related factors and apoptosis-related factors showed miR-126-3p-hucMSCs-exosomes had pro-angiogenesis and anti-apoptosis effect in rat ovaries. Conclusions Our findings revealed that hucMSCs-derived exosomes carrying miR-126-3p promote angiogenesis and attenuate OGCs apoptosis in POF, which highlighted the potential of exosomes containing miR-126-3p as an effective therapeutic strategy for POF treatment.
Background Long non-coding RNA (lncRNA) and exosomes are implicated in endometriosis development. We measured the expression of an exosomal lncRNA, homeobox transcript antisense RNA (HOTAIR), and explored its molecular mechanism in endometriosis progression. Methods Expression of HOTAIR and microRNA (miR)-761 in different endometrial tissues was measured. Exosomes were isolated from a culture medium of endometrial stromal cells (ESCs). RT-qPCR was used to measure HOTAIR expression in different exosome types. CCK-8, Edu, wound healing, transwell assays, flow cytometry and tube formation were used to detect the role of exosomal HOTAIR on ESCs and human umbilical vein endothelial cells (HUVECs). The relationship among miR-761, HOTAIR, and histone deacetylase 1 (HDAC1) was verified by dual-luciferase reporter assay. ESCs were transfected with miR-761 mimics or HDAC1 small interfering RNA (si-RNA) to ascertain if alterations in expression of miR-761 or HDAC1 could reverse the effect of exosomal HOTAIR. Then, we detected the effect of the HOTAIR/miR-761/HDAC1 axis on signal transducer and activator of transcription 3 (STAT3)-mediated inflammation. In vivo experiments were conducted to verify in vitro results. Results HOTAIR expression was upregulated and miR-761 expression was downregulated in ectopic endometrium tissues. HOTAIR was packaged into exosomes and transported from ESCs to surrounding cells. Exosomal HOTAIR promoted the proliferation, migration, and invasion, and inhibited the apoptosis of ESCs. Angiogenesis of HUVECs was enhanced after cultured with exosomal HOTAIR. HOTAIR acted as a competing endogenous RNA to downregulate miR-761 and increase HDAC1 expression. miR-761 overexpression or HDAC1 knockdown reversed the role of exosomal HOTAIR on ESCs and HUVECs. The HOTAIR/miR-761/HDAC1 axis could activate STAT3-related proinflammatory cytokines and stattic (inhibitor of phosphorylated-STAT3) could reverse the effect of HOTAIR on ESCs and HUVECs. In vivo experiments suggested that exosomal HOTAIR promoted the growth of endometrial lesions in vivo. Conclusion Exosomal HOTAIR promoted the progression and angiogenesis of endometriosis by regulating the miR-761/HDAC1 axis and activating STAT3-mediated inflammation in vitro and in vivo, which may provide promising treatment for endometriosis.
Bone marrow‐derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p‐AKT affects the expression of chemokine (CXC motif) receptor‐4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell‐derived factor‐1α (SDF‑1α)‐induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR‐9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR‐9 expression. P‐AKT affected the expression of miR‐9; as the phosphorylation of AKT increased, miR‐9 expression decreased. In addition, LY294002 increased miR‐9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR‐9 also participated in this process, and the phosphorylation of AKT affected miR‐9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.