This experiment mainly optimized the extraction technology of Agaricus blazei polypeptide (ABp) and evaluated its protective effect on aging mice. In this study, a novel single component, the M is 3 kD, was isolated and purified from Agaricus blazei. An aging mouse model was established using D-galactose. After the administration of ABp, the contents of total antioxidant capacity (T-AOC), malondialdehyde (MDA), catalase (CAT), and reactive oxygen species were significantly changed. Through immunofluorescence staining, it was observed that ABp can reduce changes in brain tissue. The differential expression of genes was analyzed by RNA-seq. A total of 295 differentially expressed genes were screened out in the ABp group.RT-qPCR verified important genes and showed that the mRNA expression levels of Hsph1, Trim32, HK1, Hnrnpa1, and Grik5 were significantly increased, and those of ApoE, Atp1a3, Stxbp1, and Mapk8ip1 was significantly decreased. Western blotting showed that the protein expression levels of Keap1 and p53 were significantly lower, while the protein expression levels of Nrf2, HO-1, Hsph1, and Trim32 were significantly higher in the ABP group. ABp played an anti-aging role in an aging mouse model. The specific mechanism of action may be related to the regulation of the expression of the Keap1/Nrf2/P53 signaling pathway and related factors. Practical applications The research may contribute to the development of ABp as functional foods or dietary supplements for anti-aging in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.