The first and second authors contributed equally to this work. SummaryA key reaction in the biosynthesis of chlorophylls (Chls) a and b from cyanobacteria through higher plants is the strictly light-dependent reduction of protochlorophyllide (Pchlide) a to chlorophyllide (Chlide) a. Angiosperms, unlike other photosynthetic organisms, rely exclusively upon this mechanism to reduce Pchlide and hence require light to green. In Arabidopsis, light-dependent Pchlide reduction is mediated by three structurally related but differentially regulated NADPH:Pchlide oxidoreductases, denoted as PORA, PORB, and PORC. The PORA and PORB genes, but not PORC, are strongly expressed early in seedling development. In contrast, expression of PORB and PORC, but not PORA, is observed in older seedlings and adult plants. We have tested the hypothesis that PORB and PORC govern light-dependent Chl biosynthesis throughout most of the plant development by identifying porB and porC mutants of Arabidopsis, the first higher plant por mutants characterized. The porB-1 and porC-1 mutants lack the respective POR transcripts and specific POR isoforms because of the interruption of the corresponding genes by a derivative of the maize Dissociation (Ds) transposable element. Single por mutants, grown photoperiodically, display no obvious phenotypes at the whole plant or chloroplast ultrastructural levels, although the porB-1 mutant has less extensive etioplast inner membranes. However, a light-grown porB-1 porC-1 double mutant develops a seedling-lethal xantha phenotype at the cotyledon stage, contains only small amounts of Chl a, and possesses chloroplasts with mostly unstacked thylakoid membranes. PORB and PORC thus seem to play redundant roles in maintaining light-dependent Chl biosynthesis in green plants, and are together essential for growth and development.
During the sequencing of the genome of Arabidopsis thaliana a gene has been identified that encodes a novel NADPH-protochlorophyllide oxidoreductase (POR)-like protein (accession number AC 002560). This protein has been named POR C. We have expressed the POR C protein in Escherichia coli and have determined its in vitro activity. POR C shows the characteristics of a light-dependent and NADPH-requiring POR similar to POR A and POR B. The expression of the POR C gene differs markedly from that of the POR A and POR B genes. In contrast to the POR A and POR B mRNAs, the POR C mRNA has been shown previously to accumulate only after the beginning of illumination. In light-adapted mature plants only POR B and POR C mRNAs were detectable. The amounts of both mRNAs show pronounced diurnal rhythmic fluctuations. While the oscillations of POR B mRNA are under the control of the circadian clock, those of POR C mRNA are not. Another difference between POR B and POR C was found in seedlings that were grown under continuous white light. The concentration of POR C mRNA rapidly declined and soon dropped beyond the limit of detection, after these seedlings were transferred to the dark. On the other hand. POR B mRNA was unaffected by this light/dark shift. When seedlings were exposed to different light intensities, the amounts of POR B mRNA remained the same, while POR A and POR C mRNAs were modulated in an inverse way by these light intensity changes. POR A mRNA was still detectable in seedlings grown under low light intensities but disappeared at higher light intensities, while the mRNA concentration of POR C rose with increasing light intensities. These different responses to light suggest that the functions of the three PORs of Arabidopsis are not completely redundant, but may allow the plant to adapt its needs for chlorophyll biosynthesis more selectively by using preferentially one of the three enzymes under a given light regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.