Purpose
Pipeline maintenance technology using smart isolation tool is becoming more widely used in the global scope. This paper aims to investigate the effects of parameters on the frictional resistance between the slip and pipeline and the frictional characteristics under different lubrication films.
Design/methodology/approach
An experimental platform consisting of slip, pipeline and data acquisition system was developed, wherein the slip slips on the pipeline under different normal forces and velocities. In addition, three lubrication conditions, namely, dry wall, oil liquid and black powder on the wall, were investigated to study the effects of lubrications on the frictional coefficient and characteristics.
Findings
Research results indicate that the frictional force and coefficient were sensitive to normal force. The crude oil affected the frictional coefficient within a certain range of normal force, and the black powder enhanced the surface roughness in the natural gas pipeline. However, velocity had no effect on them. In addition, different contact behaviors could be observed from the frictional coefficient curves.
Originality/value
In this paper, the effects of normal force and velocity on frictional resistance of sliding slip during decelerating process in pipeline were investigated, and the effects of lubrication films on frictional characteristics were also revealed. The research results are of great value to improve the prediction accuracy of smart isolation tool, and also provide a guiding significance for the development of maintenance operation in pipelines.
This article analyses the passive motion of a cylinder driven by flow in a horizontal pipe using the CFD method. In previous study by Yao et al. (2018) [A new openhole multistage hydraulic fracturing system and the ball plug motion in a horizontal pipe. Journal of Natural Gas Science and Engineering, Vol. 50,, the motion of a cylinder in a horizontal pipe was investigated experimentally. The cylinder was observed contacting with the pipe bottom, meanwhile it behaved like a guided body with its axis parallel to that of the horizontal pipe. Apart from some observations, it was very hard to gain more knowledge about the flow distribution around the cylinder and the role played by the cylinder's eccentricity in the translation. In order to conduct an extended research, this article concentrates on a general model which considers eccentricity and cylinder-pipe interaction. Moreover, a novel yet efficient approach, which investigates the translation process in a control volume attached to the cylinder, is proposed to simulate the motion utilizing the moving reference frame technique. A series of numerical simulations, with various cylinder dimensions and eccentricities, are conducted to investigate the dynamics of the cylinder and fluid. Meanwhile, the validity of the simulations is proved by comparing the results of experiments with the simulations. Lastly, an error analysis is conducted, and the limitations of this study are highlighted.
ARTICLE HISTORY
The interaction between the high pressure gas and the control fluid and the movement mechanism of the control fluid in compound perforation were studied by a series of large-scale experiments, where the movement behavior of the control fl uid was observed. The curves of measured pressure were analyzed, a mathematical model for the rigid movement of the control fl uid was established, and the movement velocity of control fluid was analyzed. Moreover, the velocity from experimental results and velocity from an analytical solution were contrasted. The movement of the control fl uid in the initial stage was similar to the rigid movement; however, the propagation of the pressure wave in the control fluid should be taken into account. Experimental results are significant for research on the movement mechanism of control fl uid in compound perforation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.