Hereditary nonsyndromic hearing loss is highly heterogeneous and most patients with a presumed genetic etiology lack a specific diagnosis. It has been estimated that several hundred genes may be associated with this sensory deficit in humans. Here, we identified compound heterozygous mutations in the TMC1 gene as the cause of recessively inherited sensorineural hearing loss by using whole-exome sequencing in a family with two deaf siblings. Sanger sequencing confirmed that both siblings inherited a missense mutation, c.589G>A p.G197R (maternal allele), and a nonsense mutation, c.1171C>T p.Q391X (paternal allele), in TMC1. We also used DNA from 50 Chinese familial patients with ARNSHL and 208 ethnicity-matched negative samples to perform extended variants analysis. Both variants co-segregated in family 1953, which had the hearing loss phenotype, but were absent in 50 patients and 208 ethnicity-matched controls. Therefore, we concluded that the hearing loss in this family was caused by novel compound heterozygous mutations in TMC1.
BackgroundInherited genetic defects play an important role in congenital hearing loss, contributing to about 60% of deafness occurring in infants. Hereditary nonsyndromic hearing loss is highly heterogeneous, and most patients with a presumed genetic etiology lack a specific molecular diagnosis.MethodsBy whole exome sequencing, we identified responsible gene of family 4794 with autosomal recessively nonsyndromic hearing loss (ARNSHL). We also used DNA from 56 Chinese familial patients with ARNSHL (autosomal recessive nonsyndromic hearing loss) and 108 ethnicity-matched negative samples to perform extended variants analysis.ResultsWe identified MYO15A c.IVS25 + 3G > A and c.8375 T > C (p.V2792A) as the disease-causing mutations. Both mutations co-segregated with hearing loss in family 4794, but were absent in the 56 index patients and 108 ethnicity-matched controls.ConclusionsOur results demonstrated that the hearing loss of family 4794 was caused by novel compound heterozygous mutations in MYO15A.
PurposeTo establish a single-nucleotide polymorphism-based analysis (SBA) method to identify triploidy in the miscarriage tissue by using low-coverage whole-genome sequencing (LC-WGS).MethodsThe method was established by fitting a quadratic curve model by counting the distribution of three heterozygous mutation content intervals. The triploid test result was mainly determined by the opening direction and the axis of symmetry of the quadratic curve, and Z test between the same batch samples was also used for auxiliary judgment.ResultsTwo hundred thirteen diploid samples and 8 triploid samples were used for establishment of the analytical method and 203 unknown samples were used for blind testing. In the blind testing, we found 2 cases positive for triploidy. After chromosome microarray analysis (CMA) and mass spectrometry verification, we found that both samples were true positives. We randomly selected 5 samples from the negative samples for mass spectrometry verification, and the results showed that these samples were all true negatives.ConclusionsOur method achieved accurate detection of triploidy in the miscarriage tissue and has the potential to detect more chromosomal abnormality types such as uniparental disomy (UPD) using a single LC-WGS approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.