Investigation of pain requires measurements of nociceptive sensitivity and other pain-related behaviors. Recent studies have indicated the superiority of gait analysis over traditional evaluations (e.g., skin sensitivity and sciatic function index [SFI]) in detecting subtle improvements and deteriorations in animal models. Here, pain-related gait parameters, whose criteria include (1) alteration in pain models, (2) correlation with nociceptive threshold, and (3) normalization by analgesics, were identified in representative models of neuropathic pain (spared nerve injury: coordination data) and inflammatory pain (intraplantar complete Freund’s adjuvant: both coordination and intensity data) in the DigiGait™ and CatWalk™ systems. DigiGait™ had advantages in fixed speed (controlled by treadmill) and dynamic SFI, while CatWalk™ excelled in intrinsic velocity, intensity data, and high-quality 3D images. Insights into the applicability of each system may provide guidance for selecting the appropriate gait imaging system for different animal models and optimization for future pain research. Electronic supplementary material The online version of this article (10.1007/s12264-018-00331-y) contains supplementary material, which is available to authorized users.
ObjectivesThis study aimed to explore the neuroprotective effects of paeoniflorin on oxidative stress and apoptosis in 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. MethodsThe effects of paeoniflorin on motor function in mice were evaluated by behavioral test. Then substantia nigra of mice were collected and neuronal damage was assessed using Nissl staining. Positive expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry. Levels of malondialdehyde, superoxide dismutase (SOD) and glutathione were measured by biochemical method. terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay was used to detect apoptosis of dopaminergic neurons. Western blotting and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expressions of Nrf2, heme oxygenase-1 (HO-1), B-cell lymphoma-2(Bcl-2), Bax and cleaved caspase-3. ResultsPaeoniflorin treatment significantly ameliorated the motor performance impairment in MPTP-induced PD mice. Moreover, it notably increased the positive expression rate of TH and reduced the damage and apoptosis of dopaminergic neurons in the substantia nigra. Furthermore, paeoniflorin increased the levels of SOD and glutathione and decreased the malondialdehyde content. It also promoted Nrf2 nuclear translocation, increased the protein and mRNA expressions of HO-1 and Bcl-2 and reduced the protein and mRNA expressions of BCL2-Associated X2 (Bax) and cleaved caspase-3. Treatment with the Nrf2 inhibitor, ML385, notably reduced the effects of paeoniflorin in MPTP-induced PD mice. ConclusionsNeuroprotective effects of paeoniflorin in MPTP-induced PD mice may be mediated via inhibition of oxidative stress and apoptosis of dopaminergic neurons in substantia nigra through activation of the Nrf2/HO-1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.