Background: Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Whilst histological and ultrastructural patterns of excess matrix form the basis of human disease classifications, comprehensive molecular resolution of abnormal matrix is lacking.
Methods: Using mass spectrometry-based proteomics we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidney matrix during aging and to existing kidney disease datasets to identify common molecular features.
Results: Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, XV, fibrinogens and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons and the increase in interstitial matrix was also observed in human kidney disease datasets.
Conclusions: This study provides deep molecular resolution of matrix accumulation in kidney aging and disease and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.
The drastic changes in the solar wind will cause serious harm to human life. Monitoring interplanetary scintillation (IPS) can predict solar wind activity, thereby effectively reducing the harm caused by space weather. Aiming at the problem of the lack of the ability to observe IPS phenomenon of the 40-meter radio telescope at the Yunnan Astronomical Observatory of China in the frequency band around 300MHz, an IPS real-time acquisition and processing scheme based on all programmable system-on-chip(APSoC) was proposed. The system calculates the average power of 10ms IPS signal in PL-side and transmits it to the system memory through AXI4 bus. PS-side reads the data, takes logarithms, packages it, and finally transmits it to the LabVIEW host computer through gigabit Ethernet UDP mode for display and storage. Experimental tests show that the system functions correctly, and the PL-side power consumption is only 1.955 W, with a high time resolution of 10ms, and no data is lost in 24 hours of continuous observation, with good stability. The system has certain application value in IPS observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.