Multiple sclerosis (MS) is an inflammatory, demyelinating, central nervous system disease mediated by myelin-specific T cells. Environmental triggers that cause a breakdown of myelin-specific T cell tolerance are unknown. We found that CD8+ myelin basic protein (MBP)-specific T cell tolerance can be broken and autoimmunity induced by infection with a virus that does not express MBP cross-reactive epitopes and does not depend on bystander activation. Instead, the virus activated dual T cell receptor (TCR)-expressing T cells capable of recognizing both MBP and viral antigens. These results demonstrate the importance of dual TCR T cells in autoimmunity and suggest a mechanism by which a ubiquitous viral infection could trigger autoimmunity in a subset of infected individuals, as hypothesized in the etiology of MS.
Myelin presentation to T cells within the central nervous system (CNS) sustains inflammation in multiple sclerosis (MS). CD4+ and CD8+ T cells contribute to MS; however, only cells that present myelin to CD4+ T cells have been identified. We show that MHC class I-restricted myelin basic protein (MBP) was presented by oligodendrocytes and cross-presented by Tip-dendritic cells (DCs) during experimental autoimmune encephalomyelitis (EAE), an animal model of MS initiated by CD4+ T cells. Tip-DCs activated naïve and effector CD8+ T cells ex vivo, and naïve MBP-specific CD8+ T cells were activated within the CNS during CD4+ T cell-induced EAE. These results demonstrate that CD4+ T cell-mediated CNS autoimmunity leads to determinant spreading to myelin-specific CD8+ T cells that are capable of direct recognition of oligodendrocytes.
Many antigens recognized by tumor-reactive cytotoxic CD8 + T cells are self-antigens. Tyrosinaserelated protein 2 (TRP-2) is a melanogenic enzyme expressed by both melanocytes and melanomas that is reported to be a candidate melanoma rejection antigen. To study the role of self-reactive CD8 + T cells in tumor immunity and autoimmunity, we generated mice which bear a T cell receptor transgene (TCR Tg) specific for the TRP-2 (180-188) epitope. TRP-2 TCR Tg mice did not spontaneously develop depigmentation despite systemic expression of TRP-2 in the skin. Peripheral T cells from these TCR Tg mice exhibited a naïve phenotype and proliferated in response to TRP-2 in vitro. In addition, transfer of in vitro-activated Tg T cells reduced B16 pulmonary tumor burden, but not subcutaneous tumors. We next sought to determine the in vivo responses of the Tg T cells to endogenous and tumor-derived TRP-2. Adoptive transfer of naïve TCR Tg T cells into wild-type C57BL/6 mice, in combination with a TRP-2-pulsed dendritic cell vaccine, induced proliferation of the Tg T cells and resulted in migration of the Tg T cells into a subcutaneous B16 melanoma tumor. Although these tumor-infiltrating Tg T cells remained reactive against TRP-2, they did not reduce growth of the primary subcutaneous tumor; similarly, these in vivo-primed effector cells had no significant effect on growth of pulmonary nodules. These data demonstrate that despite in vivo priming, tumor-infiltrating T cells may fail to reduce tumor burden. Determining the basis for the inability of the tumor micro-environment to sustain effective anti-tumor responses will be critical for designing newer, more potent anti-tumor immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.