MicroRNA-mediated post-transcriptional regulation plays key roles in stem cell self-renewal and tumorigenesis. However, the in vivo functions of specific microRNAs in controlling mammary stem cell (MaSC) activity and breast cancer formation remain poorly understood. Here we show that miR-31 is highly expressed in MaSC-enriched mammary basal cell population and in mammary tumors, and is regulated by NF-κB signaling. We demonstrate that miR-31 promotes mammary epithelial proliferation and MaSC expansion at the expense of differentiation in vivo. Loss of miR-31 compromises mammary tumor growth, reduces the number of cancer stem cells, as well as decreases tumor-initiating ability and metastasis to the lung, supporting its pro-oncogenic function. MiR-31 modulates multiple signaling pathways, including Prlr/Stat5, TGFβ and Wnt/β-catenin. Particularly, it activates Wnt/β-catenin signaling by directly targeting Wnt antagonists, including Dkk1. Importantly, Dkk1 overexpression partially rescues miR31-induced mammary defects. Together, these findings identify miR-31 as the key regulator of MaSC activity and breast tumorigenesis.
Potato common scab, caused by Streptomyces spp., is an annual production problem for potato growers, and not effectively controlled by current methods. A field with naturally occurring common scab suppression has been identified in Michigan, and confirmed to have a biological basis for this disease suppression. This field and an adjacent scab nursery conducive to disease were studied using pyrosequencing to compare the two microbial communities. Total DNA was extracted from both the disease-conducive and -suppressive soils. A phylogenetically taxon-informative region of the 16S rRNA gene was used to establish operational taxonomic units (OTUs) to characterize bacterial community richness and diversity. In total, 1,124 OTUs were detected and 565 OTUs (10% dissimilarity) were identified in disease-conducive soil and 859 in disease-suppressive soil, including 300 shared both between sites. Common phyla based on relative sequence abundance were Acidobacteria, Proteobacteria, and Firmicutes. Sequences of Lysobacter were found in significantly higher numbers in the disease-suppressive soil, as were sequences of group 4 and group 6 Acidobacteria. The relative abundance of sequences identified as the genus Bacillus was significantly higher by an order of magnitude in the disease-conducive soil.
A field in East Lansing, MI, showed a decline of potato common scab compared with an adjacent potato field. To confirm that the decline was due to biological factors, the soil was assayed. In the greenhouse, putative common-scab-suppressive soil (SS) was either treated with various temperatures or mixed with autoclaved SS at various ratios. Pathogenic Streptomyces scabies was incorporated into the treated soil at 106 CFU/cm3 of soil, followed by planting of either potato or radish. Disease severity was negatively correlated with the percentage of SS in the mixture and positively correlated with temperature above 60°C. The soil was screened for four groups of potential antagonists (general bacteria, streptomycetes, fluorescent pseudomonads, and bacilli) pairing in culture with S. scabies. The frequency of antagonistic bacteria in SS was higher than common-scab-conducive soil (CS) in all four groups but only pseudomonads and streptomycetes were significantly higher. The population of pathogenic Streptomyces spp. in the rhizosphere of CS was significantly higher than SS. Dilution plating of CS and SS samples showed no clear trends or differences in populations of total fungi, total bacteria, streptomycetes, fluorescent pseudomonads, and bacilli but terminal restriction fragment polymorphism analysis revealed two distinct microbial communities were present in SS and CS.
The Hippo–YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP‐mediated intestinal regeneration and tumorigenesis is poorly defined. Here, we report a stroma–epithelium ISLR–YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell‐specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.