Fluorescent silver nanoclusters were successfully synthesized using hybridized DNA duplexes as capping scaffolds. The formation of these emitters was highly sequence-dependent and could specifically identify a single nucleotide mutation, the sickle cell anemia gene mutation. Furthermore, the identification of single-nucleotide differences using this strategy was extended to more general types of single-nucleotide mismatches.
The maize (Zea mays) B centromere is composed of B centromere-specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.