Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads-antibody-antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 μL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases.
Single-cell whole-genome sequencing (WGS) is critical for characterizing dynamic intercellular changes in DNA. Current sample preparation technologies for single-cell WGS are complex, expensive, and suffer from high amplification bias and errors. Here, we describe Digital-WGS, a sample preparation platform that streamlines high-performance single-cell WGS with automatic processing based on digital microfluidics. Using the method, we provide high single-cell capture efficiency for any amount and types of cells by a wetted hydrodynamic structure. The digital control of droplets in a closed hydrophobic interface enables the complete removal of exogenous DNA, sufficient cell lysis, and lossless amplicon recovery, achieving the low coefficient of variation and high coverage at multiple scales. The single-cell genomic variations profiling performs the excellent detection of copy number variants with the smallest bin of 150 kb and single-nucleotide variants with allele dropout rate of 5.2%, holding great promise for broader applications of single-cell genomics.
Single-cell RNA sequencing (scRNA-seq) is a powerful method in investigating single-cell heterogeneity to reveal rare cells, identify cell subpopulations, and construct a cell atlas. Conventional benchtop methods for scRNA-seq, including multistep operations, are labor intensive, reaction inefficient, contamination prone, and reagent consuming. Here we report a digital microfluidics-based single-cell RNA sequencing (digital-RNA-seq) for simple, efficient, and low-cost single-cell mRNA measurements. Digital-RNA-seq automates fluid handling as discrete droplets to sequentially perform protocols of scRNA-seq. To overcome the current problems of single-cell isolation in efficiency, integrity, selectivity, and flexibility, we propose a new strategy, passive dispensing method, relying on well-designed hydrophilic–hydrophobic microfeatures to rapidly generate single-cell subdroplets when a droplet of cell suspension is encountered. For sufficient cDNA generation and amplification, digital-RNA-seq uses nanoliter reaction volumes and hydrophobic reaction interfaces, achieving high sensitivity in gene detection. Additionally, the stable droplet handling and oil-closed reaction space featured in digital-RNA-seq ensure highly accurate measurement. We demonstrate the functionality of digital-RNA-seq by quantifying heterogeneity among single cells, where digital-RNA-seq shows excellent performance in rare transcript detection, cell type differentiation, and essential gene identification. With the advantages of automation, sensitivity, and accuracy, digital-RNA-seq represents a promising scRNA-seq platform for a wide variety of biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.