Some studies have suggested heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) to be a promoter in cancer development. Nonetheless, no detailed pan-cancer investigation has been reported. Thus, this study explored the possible oncogenic role of HNRNPA2B1, such as its expression levels, gene alteration, protein–protein interaction network, immune infiltration, and prognostic value in different cancer types using The Cancer Genome Atlas web platform. Many types of cancer exhibit HNRNPA2B1 overexpression, which is notably associated with poor prognosis. We also found that HNRNPA2B1 with different methylation levels causes a varied prognosis in lung adenocarcinoma (LUAD). It is noteworthy that HNRNPA2B1 levels are connected with cancer-associated fibroblasts in cancers, such as adrenocortical carcinoma, LUAD, and stomach adenocarcinoma. In addition, HNRNPA2B1 participates in the spliceosome- and cell cycle-associated pathways. Finally, HNRNPA2B1 is highly valued in the diagnosis of LUAD, lung squamous cell carcinoma, breast invasive carcinoma, esophageal carcinoma, and liver hepatocellular carcinoma. This systematic study highlighted the role of HNRNPA2B1 in pan-cancer progression.
Long noncoding RNA (lncRNA), specifically the upregulation of lncRNA NR2F1 antisense RNA 1 (NR2F1-AS1), has been involved in the progression of non-small cell lung cancer (NSCLC), but the mechanisms that underlie this remain unclear. In this study, the expression of NR2F1-AS1, miR-363-3p, and SOX4 was assessed in NSCLC cells. A loss-of-function assay was used to measure the tumorigenicity of NSCLC cells. The glycolysis and glutamine metabolism of NSCLC cells was also measured via extracellular acidification rate, consumption of glucose and glutamine, and production of lactate and ATP. The relationships among NR2F1-AS1, miR-363-3p, and SOX4 were detected via dual-luciferase reporter assay. HK-2, GLS1, and SOX4 levels were also analyzed. We found that both NSCLC tissues and cells had higher levels of NR2F1-AS1. Silencing of NR2F1-AS1 inhibited the tumorigenicity of cells in vitro and reduced the glycolysis and glutamine metabolism of NSCLC cells. Regarding its mechanism, NR2F1-AS1 positively regulated the SOX4 level by sponging miR-363-3p. Furthermore, miR-363-3p inhibition or SOX4 overexpression reversed the repressing role of sh-NR2F1-AS1 in the tumorigenicity of NSCLC cells. In summary, NR2F1-AS1 promotes the tumorigenicity of NSCLC cells by regulating miR-363-3p/SOX4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.