Purpose: Whether isocitrate dehydrogenase (IDH) gene aberrations affected prognosis of patients with acute myeloid leukemia (AML) was controversial. Here, we conducted a meta-analysis to evaluate their prognostic value.Experimental Design: PubMed, Embase, Cochrane, and Chinese databases were searched to identify studies exploring how IDH gene aberrations affected AML outcome. Pooled HRs and relative risks (RR) were calculated, along with 95% confidence intervals (CI).Results: Thirty-three reports were included.
Background
Maize (
Zea mays
L.) is one of the main agricultural crops with the largest yield and acreage in the world. However, maize germplasm is very sensitive to low temperatures, mainly during germination, and low temperatures significantly affect plant growth and crop yield. Therefore, the identification of genes capable of increasing tolerance to low temperature has become necessary.
Results
In this study, fourteen phenotypic traits related to seed germination were used to assess the genetic diversity of maize through genome-wide association study (GWAS). A total of 30 single-nucleotide polymorphisms (SNPs) linked to low-temperature tolerance were detected (−log10(
P
) > 4), fourteen candidate genes were found to be directly related to the SNPs, further additional 68 genes were identified when the screen was extended to include a linkage disequilibrium (LD) decay distance of
r
2
≥ 0.2 from the SNPs. RNA-sequencing (RNA-seq) analysis was then used to confirm the linkage between the candidate gene and low-temperature tolerance. A total of ten differentially expressed genes (DEGs) (|log
2
fold change (FC)| ≥ 0.585,
P
< 0.05) were found within the set distance of LD decay (
r
2
≥ 0.2). Among these genes, the expression of six DEGs was verified using qRT-PCR.
Zm00001d039219
and
Zm00001d034319
were putatively involved in ‘mitogen activated protein kinase (MAPK) signal transduction’ and ‘fatty acid metabolic process’, respectively, based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Thus, these genes appeared to be related to low-temperature signal transduction and cell membrane fluidity.
Conclusion
Overall, by integrating the results of our GWAS and DEG analysis of low-temperature tolerance during germination in maize, we were able to identify a total of 30 SNPs and 82 related candidate genes, including 10 DEGs, two of which were involved in the response to tolerance to low temperature. Functional analysis will provide valuable information for understanding the genetic mechanism of low-temperature tolerance during germination in maize.
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic and epigenetic abnormalities. Recent genome-wide DNA methylation studies have highlighted an important role of dysregulated methylation signature in AML from biological and clinical standpoint. In this review, we will outline the recent advances in the methylome study of AML and overview the impacts of DNA methylation on AML diagnosis, treatment, and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.