Ionospheric observations from the ground‐based GPS receiver network, CHAMP and GRACE satellites and ionosondes were used to examine topside and bottomside ionospheric variations at low and middle latitudes over the Pacific and American sectors during the October 2003 superstorms. The latitudinal variation and the storm time response of the ground‐based GPS total electron content (TEC) were generally consistent with those of the CHAMP and GRACE up‐looking TEC. The TECs at heights below the satellite altitudes during the main phases were comparable to, or even less than, the quiet time values. However, the storm time CHAMP and GRACE up‐looking TECs showed profound increases at low and middle latitudes. The ground‐based TEC and ionosonde data were also combined to study the TEC variations below and above the F2 peak height (hmF2). The topside TECs above hmF2 at low and middle latitudes showed significant increases during storm time; however, the bottomside TEC below hmF2 did not show so obvious changes. Consequently, the bottomside ionosphere made only a minor contribution to the ionospheric positive phase seen in the total TEC at low and middle latitudes. Moreover, at middle latitudes F2 peak electron densities during storm time did not have the obvious enhancements that were seen in both the ground‐based and topside TECs, although they were accompanied by increases of hmF2. Therefore, storm time TEC changes are not necessarily related to changes in ionospheric peak densities. Our results suggest that TEC increases at low and middle latitudes are also associated with effective plasma scale height variations during storms.
Histidine (His) is an essential ingredient for protein synthesis and is required by all living organisms. In higher plants, although there is considerable evidence that His is essential for plant growth and survival, there is very little information as to whether it plays any specific role in plant development. Here, we present evidence for such a role of this amino acid in root development in Arabidopsis (Arabidopsis thaliana) from the characterization of a novel Arabidopsis mutant, hpa1, which has a very short root system and carries a mutation in one of the two Arabidopsis histidinol-phosphate aminotransferase (HPA) genes, AtHPA1. We have established that AtHPA1 encodes a functional HPA and that its complete knockout is embryo lethal. Biochemical analysis shows that the mutation in hpa1 only resulted in a 30% reduction in free His content and had no significant impact on the total His content. It did not cause any known symptoms of His starvation. However, the mutant displayed a specific developmental defect in root meristem maintenance and was unable to sustain primary root growth 2 d after germination. We have demonstrated that the root meristem failure in the mutant is tightly linked to the reduction in free His content and could be rescued by either exogenous His supplementation or AtHPA1 overexpression. Our results therefore reveal an important role of His homeostasis in plant development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.