The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field. In this study, we investigate an unconventional electric field effect on interfacial DMI, skyrmion helicity, and skyrmion dynamics in a system with broken inversion symmetry. We design heterostructures with a 3d-5d atomic orbital interface to demonstrate the gate bias control of the DMI energy and thus transform the DMI between opposite chiralities. Furthermore, we use this voltage-controlled DMI (VCDMI) to manipulate the skyrmion spin texture. As a result, a type of intermediate skyrmion with a unique helicity is created, and its motion can be controlled and made to go straight. Our work shows the effective control of spin chirality, skyrmion helicity, and skyrmion dynamics by VCDMI. It promotes the emerging field of voltage-controlled chiral interactions and voltage-controlled skyrmionics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.