The white-matter (micro-)structural architecture of the brain promotes synchrony among neuronal populations, giving rise to richly patterned functional connections. A fundamental problem for systems neuroscience is determining the best way to relate structural and functional networks quantified by diffusion tensor imaging and resting-state functional MRI. As one of the state-of-the-art approaches for network analysis, graph convolutional networks (GCN) have been separately used to analyze functional and structural networks, but have not been applied to explore inter-network relationships. In this work, we propose to couple the two networks of an individual by adding inter-network edges between corresponding brain regions, so that the joint structure-function graph can be directly analyzed by a single GCN. The weights of inter-network edges are learnable, reflecting non-uniform structure-function coupling strength across the brain. We apply our Joint-GCN to predict age and sex of 662 participants from the public dataset of the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) based on their functional and micro-structural white-matter networks. Our results support that the proposed Joint-GCN outperforms existing multi-modal graph learning approaches for analyzing structural and functional networks.
The cylindricity error is one of the basic form errors in mechanical parts, which greatly influences the assembly accuracy and service life of relevant parts. For the minimum zone method (MZM) in international standards, there is no specific formula to calculate the cylindricity error. Therefore, the evaluation methods of the cylindricity error under the MZM have been widely concerned by international scholars. To improve the evaluation accuracy and accelerate the iteration speed of the cylindricity, an improved harmony search (IHS) algorithm is proposed and applied to compute the cylindricity. On the basis of the standard harmony search algorithm, the logistic chaotic initialization is introduced into the generation of initial solution to improve the quality of solutions. During the iterative process, the global and local search capabilities are balanced by adopting the par and bw operators adaptively. After each iteration, the Cauchy mutation strategy is adopted to the best solution to further improve the calculation precision of the IHS algorithm. Finally, four test functions and three groups of cylindricity error examples were applied to validity verification of the IHS algorithm, the simulation test results show that the IHS algorithm has advantages of the computing accuracy and iteration speed compared with other traditional algorithms, and it is very effective for the application in the evaluation of the cylindricity error.
There are many uncertainties influencing the precision of coordinate measurement, most of which can be detected and compensated according to ISO 10360. However the effects of measuring instrument accuracy and information of measuring points including number and distribution are not duly researched. There's few reference for measurement personnel to reduce the effects. In this paper three experiments are provided to explore the effects of measuring instrument accuracy and measuring points' distribution on circular coordinate measurement precision. With the analysis of the data acquired by hundred thousand simulations with Matlab we find out the precision variation tendency of each impact factor. The analysis offers a standard of measuring instrument accuracy and measuring point's selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.