Fusarium head blight (FHB) is a serious disease in wheat and barley affecting both yield and quality. To identify genes for resistance to infection, the RIL population derived from 'Nanda2419' x 'Wangshuibai' and the parents were evaluated for percentage of infected spikes (PIS) in four different environments. Using a 2,960 cM marker framework map constructed for this population, ten chromosome regions were detected for their association with type I resistance through interval mapping with Mapmaker/QTL, among which QTLs mapped in the intervals of Xwmc349--Xgwm149 on chromosome 4B, of Xwmc96--Xgwm304 on chromosome 5A and of Xgwm408--Xbarc140 on chromosome 5B were revealed in at least three environments and have Wangshuibai as the source of resistance alleles. Qfhi.nau-4B and Qfhi.nau-5A had larger effects and explained up to 17.5 and 27.0% of the phenotypic variance, respectively. To detect epistasis QTLs, two-locus interactions were examined by whole genome scan. Interactions of five locus pairs were found to have significant effects on type I resistance with the LOD score ranging 3.8-6.5 and four of them conferred resistance in parental phase. The one with the most significant effect was Xcfd42--Xgwm469 (6D)/Xwmc390-2--Xbd04 (2A) pair. No QTL x E interaction was detected for PIS. It was found that flowering time did not have significant effects on PIS in this population. Our studies indicated that Wangshuibai is useful for breeding for both type I and type II scab resistance and the markers associated with the QTLs could be used in marker-assisted selection and isolation of scab-resistance QTLs.
Kernel number per spike is one of the most important yield components of wheat. To map QTLs related to kernel number including spike length (SPL), spikelet number per spike (SPN), fertile spikelet number (FSPN), sterile spikelet number (SSPN) and compactness, and to characterize the inheritance modes of the QTLs and two-locus interactions, 136 recombinant inbred lines (RILs) derived from 'Nanda2419' x 'Wangshuibai' and an immortalized F(2 )population (IF(2)) generated by randomly permutated intermating of these RILs were investigated. QTL mapping made use of the previously constructed over 3300 cM linkage map of the RIL population. Three, five, two, two and six chromosome regions were identified, respectively, for their association with SPL, SPN, FSPN, SSPN, and compactness in at least two of the three environments examined. All compactness QTLs but one shared the respective intervals of QSpn.nau-5A and the SPL QTLs. Xcfd46-Xwmc702 interval on chromosome 7D was related to all traits but SSPN and had consistently the largest effects. The fact that not all the compactness QTL intervals were related to both SPL and SPN indicates that compactness is regulated by different mechanisms. Interval coincidence between QTLs of SPL and SPN and between QTLs of FSPN and SSPN was minimal. For all the traits, favorable alleles exist in both parents. Inheritance modes from additiveness to overdominance of the QTLs were revealed and two-locus interactions were detected, implying that the traits studied are under complex genetic control. The results could contribute to wheat yield improvement and better use of Wangshuibai and Nanda2419 the two special germplasms in wheat breeding program.
The objective of this work was to elucidate NO 3 -supply, Cl -toxicity, and Cl -/NO 3 -interaction in Glycine max and Glycine soja under salt stress. G. max cultivars (Lee68 and Jackson) and G. soja accessions (BB52 and N23227) with different salt tolerance were chosen as the experimental materials. Effects of low (0.75 mmol/L), normal (7.5 mmol/L), and high (15
The TIFY gene family is a plant-specific gene family encoding a group of proteins characterized by its namesake, the conservative TIFY domain and members can be organized into four subfamilies: ZML, TIFY, PPD and JAZ (Jasmonate ZIM-domain protein) by presence of additional conserved domains. The TIFY gene family is intensively explored in several model and agriculturally important crop species and here, yet the composition of the TIFY family of maize has remained unresolved. This study increases the number of maize TIFY family members known by 40%, bringing the total to 47 including 38 JAZ, 5 TIFY, and 4 ZML genes. The majority of the newly identified genes were belonging to the JAZ subfamily, six of which had aberrant TIFY domains, suggesting loss JAZ-JAZ or JAZ-NINJA interactions. Six JAZ genes were found to have truncated Jas domain or an altered degron motif, suggesting resistance to classical JAZ degradation. In addition, seven membranes were found to have an LxLxL-type EAR motif which allows them to recruit TPL/TPP co-repressors directly without association to NINJA. Expression analysis revealed that ZmJAZ14 was specifically expressed in the seeds and ZmJAZ19 and 22 in the anthers, while the majority of other ZmJAZs were generally highly expressed across diverse tissue types. Additionally, ZmJAZ genes were highly responsive to wounding and JA treatment. This study provides a comprehensive update of the maize TIFY/JAZ gene family paving the way for functional, physiological, and ecological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.