Demonstrated here is the correlation between atomic configuration induced electronic density of single‐atom Co active sites and oxygen reduction reaction (ORR) performance by combining density‐functional theory (DFT) calculations and electrochemical analysis. Guided by DFT calculations, a MOF‐derived Co single‐atom catalyst with the optimal Co1‐N3PS active moiety incorporated in a hollow carbon polyhedron (Co1‐N3PS/HC) was designed and synthesized. Co1‐N3PS/HC exhibits outstanding alkaline ORR activity with a half‐wave potential of 0.920 V and superior ORR kinetics with record‐level kinetic current density and an ultralow Tafel slope of 31 mV dec−1, exceeding that of Pt/C and almost all non‐precious ORR electrocatalysts. In acidic media the ORR kinetics of Co1‐N3PS/HC still surpasses that of Pt/C. This work offers atomic‐level insight into the relationship between electronic density of the active site and catalytic properties, promoting rational design of efficient catalysts.
Electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from atmosphere and convert them to useful industrial products like methane, methanol, formate,...
Nanozymes aim to mimic the highly evolved active centers of natural enzymes. Despite progress in nanozyme engineering, their catalytic performance is much less favorable compared with natural enzymes. This study shows that precise control over the atomic configuration of the active centers of Co single-atom nanozymes (SAzymes) enables the rational regulation of their catalase-like performance guided by theorical calculations. The constructed Co-N 3 PS SAzyme exhibits an excellent catalase-like activity and kinetics, exceeding the representative controls of Co-based SAzymes with different atomic configurations. Moreover, we developed an ordered structure-oriented coordination design strategy for rationally engineering SAzymes and established a correlation between the structure and enzyme-like performance. This work demonstrates that precise control over the active centers of SAzymes is an efficient strategy to mimic the highly evolved active sites of natural enzymes.
Demonstrated here is the correlation between atomic configuration induced electronic density of single‐atom Co active sites and oxygen reduction reaction (ORR) performance by combining density‐functional theory (DFT) calculations and electrochemical analysis. Guided by DFT calculations, a MOF‐derived Co single‐atom catalyst with the optimal Co1‐N3PS active moiety incorporated in a hollow carbon polyhedron (Co1‐N3PS/HC) was designed and synthesized. Co1‐N3PS/HC exhibits outstanding alkaline ORR activity with a half‐wave potential of 0.920 V and superior ORR kinetics with record‐level kinetic current density and an ultralow Tafel slope of 31 mV dec−1, exceeding that of Pt/C and almost all non‐precious ORR electrocatalysts. In acidic media the ORR kinetics of Co1‐N3PS/HC still surpasses that of Pt/C. This work offers atomic‐level insight into the relationship between electronic density of the active site and catalytic properties, promoting rational design of efficient catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.