Biocatalytic alkylations are important reactions to obtain chemo-, regio-and stereoselectively alkylated compounds. This can be achieved using S-adenosyl-l-methionine (SAM)-dependent methyltransferases and SAM analogs. It was recently shown that a halide methyltransferase (HMT) from Chloracidobacterium thermophilum can synthesize SAM from SAH and methyl iodide. We developed an iodide-based assay for the directed evolution of an HMT from Arabidopsis thaliana and used it to identify a V140T variant that can also accept ethyl-, propyl-, and allyl iodide to produce the corresponding SAM analogs (90, 50, and 70 % conversion of 15 mg SAH). The V140T AtHMT was used in one-pot cascades with O-methyltransferases (IeOMT or COMT) to achieve the regioselective ethylation of luteolin and allylation of 3,4dihydroxybenzaldehyde. While a cascade for the propylation of 3,4-dihydroxybenzaldehyde gave low conversion, the propyl-SAH intermediate could be confirmed by NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.