The Global Positioning System (GPS) has been widely applied in outdoor positioning, but it cannot meet the accuracy requirements of indoor positioning. Comprising an important part of the Internet of Things perception layer, Radio Frequency Identification (RFID) plays an important role in indoor positioning. We propose a novel localization scheme aiming at the defects of existing RFID localization technology in localization accuracy and deployment cost, called ANTspin: Efficient Absolute Localization Method of RFID Tags via Spinning Antenna, which introduces a rotary table in the experiment. The reader antenna is fixed on the rotary table to continuously collect dynamic data. When compared with static acquisition, there is more information for localization. After that, the relative incident angle and distance between tags and the antenna can be analyzed for localization with characteristics of Received Signal Strength Indication (RSSI) data. We implement ANTspin using COTS RFID devices and the experimental results show that it achieves a mean accuracy of 9.34 cm in 2D and mean accuracy of 13.01 cm in three-dimensions (3D) with high efficiency and low deployment cost.
Ultra-high frequency radio frequency identification (UHF RFID) technology has been widely used in many areas, and RFID localization becomes a research hotspot. There are many kinds of research on absolute localization; however, due to some disadvantages of absolute localization, relative localization is more effective in some situations. At present, there are some problems with relative localization: existing methods have low localization accuracy, and it is difficult for them to deal with high-density tags. Aiming at these problems, this paper proposes PRDL: relative localization method of RFID tags via phase and RSSI based on deep learning. By using deep learning, the variation characteristics of RFID phase and RSSI are extracted with limited data accuracy conditions. On this basis, we can infer the relative positional relationship of RFID tags with high accuracy, and design the corresponding sorting algorithm to obtain the sequence arrangement. PRDL has experimented with bare tags and actual books, and the experimental results show that PRDL can achieve better results than the traditional relative localization methods. A series of tests also showed that PRDL has good robustness and generalization ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.