[1] Knowledge of long-range transport and vertical distribution of Asian dust aerosols in the free troposphere is important for estimating their impact on climate. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), surface micropulse lidar (MPL), and standard surface measurements are used to directly observe the long-range transport and vertical distribution of Asian dust aerosols in the free troposphere during the Pacific Dust Experiment (PACDEX). The MPL measurements were made at the Loess Plateau (35.95°N, 104.1°E) near the major dust source regions of the Taklamakan and Gobi deserts. Dust events are more frequent in the Taklamakan, where floating dust dominates, while more intensive, less frequent dust storms are more common in the Gobi region. The vertical distribution of the CALIPSO backscattering/depolarization ratios indicate that nonspherically shaped dust aerosols floated from near the ground to an altitude of approximately 9 km around the source regions. This suggests the possible long-range transport of entrained dust aerosols via upper tropospheric westerly jets. A very distinct large depolarization layer was also identified between 8 and 10 km over eastern China and the western Pacific Ocean corresponding to dust aerosols transported from the Taklamakan and Gobi areas, as confirmed by back trajectory analyses. The combination of these dust sources results in a two-layer or multilayered dust structure over eastern China and the western Pacific Ocean.
Abstract. The dust aerosol radiative forcing and heating rate over the Taklimakan Desert in Northwestern China in July 2006 are estimated using the Fu-Liou radiative transfer model along with satellite observations. The vertical distributions of the dust aerosol extinction coefficient are derived from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The CERES (Cloud and the Earth's Energy Budget Scanner) measurements of reflected solar radiation are used to constrain the dust aerosol type in the radiative transfer model, which determines the dust aerosol single-scattering albedo and asymmetry factor as well as the aerosol optical properties' spectral dependencies. We find that the dust aerosols have a significant impact on the radiative energy budget over the Taklimakan desert. In the atmospheres containing light, moderate and heavy dust layers, the dust aerosols heat the atmosphere (daily mean) by up to 1, 2, and 3 K day −1 , respectively. The maximum daily mean radiative heating rate reaches 5.5 K day −1 at 5 km on 29 July. The averaged daily mean net radiative effect of the dust are 44.4, −41.9, and 86.3 W m −2 , respectively, at the top of the atmosphere (TOA), surface, and in the atmosphere. Among these effects about two thirds of the warming effect at the TOA is related to the longwave radiation, while about 90% of the atmospheric warming is contributed by the solar radiation. At the surface, about one third of the dust solar radiativeCorrespondence to: J. Huang (hjp@lzu.edu.cn) cooling effect is compensated by its longwave warming effect. The large modifications of radiative energy budget by the dust aerosols over Taklimakan Desert should have important implications for the atmospheric circulation and regional climate, topics for future investigations.
This note describes changes that have been made to the National Centers for Environmental Prediction (NCEP) operational ''early'' eta model. The changes are 1) an decrease in horizontal grid spacing from 80 to 48 km, 2) incorporation of a cloud prediction scheme, 3) replacement of the original static analysis system with a 12-h intermittent data assimilation system using the eta model, and 4) the use of satellite-sensed total column water data in the eta optimum interpolation analysis. When tested separately, each of the four changes improved model performance. A quantitative and subjective evaluation of the full upgrade package during March and April 1995 indicated that the 48-km eta model was more skillful than the operational 80-km model in predicting the intensity and movement of large-scale weather systems. In addition, the 48-km eta model was more skillful in predicting severe mesoscale precipitation events than either the 80-km eta model, the nested grid model, or the NCEP global spectral model during the March-April 1995 period. The implementation of this new version of the operational early eta system was performed in October 1995.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.