BackgroundDespite the effectiveness of chemotherapy and targeted therapy for colorectal cancer, drug resistance drives therapy failure and tumor relapse. Increasing evidence has suggested that cancer cells can enter a reversible drug-tolerant persister state to survive chemotherapy or targeted agents. However, the traits and treatable vulnerabilities of anti-colorectal cancer drug-tolerant persister cells is not yet known.MethodsIn this study, we established 5-fluorouracil and AZ628-tolerant persister cell models in two colorectal cancer cell lines, namely HCT116 and SW620, and revealed the characteristics of colorectal cancer persister cells by cell viability assay and flow cytometry. We investigated the efficacy and mechanism of ferroptosis inducers RSL3 and FIN56 on persister cells, which are glutathione peroxidase 4 inhibitors. In the xenograft mouse model, we further evaluated the inhibitory effect of RSL3 on tumor regrowth.ResultsColorectal cancer persister cells, which were enriched in the residual cancer cell population, exhibited reduced drug sensitivity, were largely quiescent and expressed high levels of stem cell-related genes and mesenchymal markers but not epithelial markers. The persister cells were more sensitive and underwent ferroptosis induced by glutathione peroxidase 4 inhibitors. Mechanistically, glutathione peroxidase 4 and ferrous iron, which are pivotal ferroptosis regulators, were upregulated in residual cells or tumors, and were hence potential therapeutic targets of persister cells. In the xenograft model, we confirmed that inhibition of glutathione peroxidase 4 restrained tumor regrowth after discontinuation of anti-cancer drug treatment. Moreover, biopsies obtained from patients with colorectal cancer undergoing neoadjuvant chemoradiotherapy revealed upregulated glutathione peroxidase 4 and ferritin heavy chain 1. High glutathione peroxidase 4 expression correlates with a worse prognosis in colorectal cancer patients.ConclusionsOur work reveals that the upregulated glutathione peroxidase 4 and ferrous iron in anti-colorectal cancer drug-tolerant persister cells were potential therapeutic targets. Glutathione peroxidase 4 inhibition combined with chemotherapy or targeted therapy may be a promising therapy for colorectal cancer.
Gastric cancer, with high morbidity and mortality rates, is one of the most heterogeneous tumors. Radical gastrectomy and postoperative chemotherapy are the standard treatments. However, the safety and efficacy of neoadjuvant therapy (NAT) need to be confirmed by many trials before implementation, creating a bottleneck in development. Although clinical benefits of NAT have been observed, a series of problems remain to be solved. Before therapy, more contributing factors should be offered for choice in the intended population and ideal regimens. Enhanced computed tomography (CT) scanning is usually applied to evaluate effectiveness according to Response Evaluation Criteria in Solid Tumors (RECIST), yet CT scanning results sometimes differ from pathological responses. After NAT, the appropriate time for surgery is still empirically defined. Our review aims to discuss the abovementioned issues regarding NAT for GC, including indications, selection of regimens, lesion assessment and NAT-surgery interval time.
Background Gastrointestinal stromal tumors rarely occur in children, but when they do, their biological behavior and histopathological patterns differ from those of adults. Case presentation A 13-year-old boy with a gastrointestinal stromal tumor was characterized by a rare genetic mutation. The patient complained of “fatigue with intermittent abdominal pain for 1 month”. According to the preoperative imaging examination, gastroscopy, and gastroscopic biopsy, the patient was diagnosed with a gastric stromal tumor. Postoperative pathology showed that the tumor cells were fusiform and ovoid, and mitotic figures were easily seen. Immunohistochemistry revealed that the tumor was S-100(+), SOX10(−), CD34(+), SMA(partially+), DOG-1(+), CD117(+), KI-67 (positive for 20% + of the subjects and 40% + of the hotspots), and SDHB(−). Genetic tests showed missense mutations in ALK and TSC1. With surgical treatment, the tumor was completely removed. The patient recovered well and was discharged on the ninth day after the operation. He is currently under follow-up. Conclusions In this case involving a patient with a gastrointestinal stromal tumor, immunohistochemistry indicated that the tumor was an "SDH-deficient type", and gene detection showed no KIT or PDGFRA mutation but rare ALK and TSC1 mutations, which adds to the knowledge of the types of gene mutations in children with gastrointestinal stromal tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.