In order to synthesize a novel two-dimensional energetic material, nitrated graphene oxide (NGO) was prepared by the nitrification of graphite oxide to make a functional modification. Based on the morphological characterization, the NGO has a greater degree of curl and more wrinkles on the surface. The structure characterization and density functional theory calculation prove that epoxy and hydroxyl groups on the edge of graphite oxide have reacted with nitronium cation (NO2+) to produce nitro and nitrate groups. Hydrophobicity of NGO implied higher stability in storage than graphene oxide. Synchronous simultaneous analysis was used to explore the decomposition mechanism of NGO preliminarily. The decomposition enthalpy of NGO is 662.0 J·g−1 and the activation energy is 166.5 kJ·mol−1. The thermal stability is similar to that of general nitrate energetic materials. The hygroscopicity, thermal stability and flammability of NGO prove that it is a novel two-dimensional material with potential applications as energetic additives in the catalyst, electrode materials and energetic devices.
The mechanism function of CR's thermal decomposition is described by the Zhuralev–Lesokin–Tempelman equation. In air atmosphere, the pyrolysis reaction takes place to produce 2-aminodiphenyl ether, while the oxidizing reaction takes place to produce 10,11-dihydrodibenz[b,f][1,4]oxazepin-11-one.
The mechanical response and damage process of melt-cast explosives under complex stress states can be affected by having a high-volume ratio of the energetic filler material to the matrix. Understanding the characteristics of the nonlinear mechanical properties of 2,4-dinitroanisole/cyclotetramethylenetetranitramine (DNAN/HMX) melt-cast explosives with a high solid-phase content can enable the analysis of the response mechanism of different strain rates. DNAN/HMX melt-cast explosives were investigated using a universal material testing machine and a split-Hopkinson pressure bar (SHPB). The stress equilibrium and constant-strain-rate loading of the low-impedance, low-strength DNAN/HMX melt-cast explosive material in the SHPB test were achieved using an incident wave shaping technique, and stress–strain curves were obtained at different strain rates (40, 51, 110, and 256 s−1). Based on the stress–strain relationship curve of DNAN/HMX melt-cast explosives, the viscoelastic parameters of the Visco-statistical cracking mechanism (SCRAM) constitutive model of DNAN/HMX melt-cast explosives are obtained by the least squares method. The results of quasi-static and dynamic loading show that the failure stress of DNAN/HMX melt-cast explosives gradually increases with the increasing strain rate, exhibiting a significant strain rate effect, while the dynamic loading displays the viscoelastic effect. The fitted Visco-SCRAM model can better predict the mechanical response of explosives under complex loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.