The best performance of the phosphor Li(2)SrSiO(4): Eu(2+), Ce(3+) in terms of luminescence efficiency (LE), color rendering index (CRI) and color temperature (Tc) for light-emitting diode application was optimized with combinatorial approach. The combinatorial libraries were synthesized with solution-based method and the scale-up samples were synthesized with conventional solid-reaction method. Crystal structure was investigated by using the X-ray diffraction spectrometer. The emission spectra of each sample in combinatorial libraries were measured in situ by using a fiber optic spectrometer. Fluorescence spectrometers were used to record excitation and emission spectra of bulk samples. White light generation was tuned up by tailoring Eu(2+) and Ce(3+) concentrations in the single-phased host of Li(2)SrSiO(4) under near-ultraviolet excitation, but it exhibited low efficiency of luminescence and poor color rendering index. The effects of each level of the Eu(2+) and Ce(3+) concentrations on LE, CRI, and Tc were evaluated with the Taguchi method. The optimum levels of the interaction pairs between Eu(2+) and Ce(3+) concentration on LE, CRI, and Tc were [2, 1] (0.006 M, 0.003 M), [1, 2] (0.003 M, 0.006 M), and [3, 1] (0.009 M, 0.00 3M), respectively. The thermal stability of luminescence, the external quantum efficiency (QE), luminance, chromaticity coordinates, correlated color temperature, color purity including the composition ratio of RGB in white light, and color rendering index of the white light emission of phosphor were evaluated comprehensively from a bulk sample.
Efficient, stable electrocatalysts are required to promote the hydrogen evolution reaction (HER) to obtain hydrogen as a clean, sustainable fuel via water splitting. In the present work, ribbons of the metallic glass FeCoPC were produced using a conventional melt-spinning technique and assessed as electrocatalysts for HER. In 0.5 M HSO, these ribbons generated an overpotential of 118 mV at a current density of 10 mA cm. This overpotential remained essentially constant over 20 h under these conditions. On the basis of the excellent properties, these glassy ribbons represent a new type of highly active, robust HER catalyst suitable for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.