Fe-doped ZnO ceramic nanofibers (CNFs) as specific structural features and unique properties synthesized by using electrospun technology. X-ray diffraction disclosed the wurtzite phase, and the microscopy analysis by SEM revealed the formation uniform nanofibers with 400 nm in diameter. The UV-visible diffuse reflectance spectroscopy (DRS) was used to investigation the optical properties of the pristine and the various percentages Fe doped ZnO photocrystalysts. The photo-reduction activities of photocatalyst were evaluated using methylene blue (MB) as organic contaminant irradiated with simulate solar light from xenon lamp. The photocatalytic results that 1% Fe-doped ZnO CNFs exhibits efficient visible and UV light activity and excellent photo-stability. The kinetic constant of MB degradation over 1% Fe-doped ZnO is about 2.2 times higher than that over pure ZnO. The experiment demonstrated that the photodegradation efficiency of Fe-doped ZnO was significantly higher than that of undoped ZnO.
The bundle-like NiCo2O4 powder was synthesized using hydrothermal synthesis and high-temperature calcination method and, as catalyst, NiCo2O4 powder was utilized to activate peroxymonosulfate for removing dibenzothiophene from fuel oil.
To improve light usage, Ag and Cu were co-impregnated with nano-ZnO, and the mesoporous silica gel (meso-SiO2) was chosen as the carrier. The sol-gel method was used to successfully construct a composite photocatalyst with 3 percent Ag/0.1 percent Cu/nano-ZnO/meso-SiO2. For the evaluation of the photocatalytic activity of the as-prepared catalysts, Reactive Black 5 was used as a simulated organic pollutant in aqueous. The results revealed that uniform spherical nano-ZnO particles with a diameter of 10 nm were attached to the surface and mesopore of meso-SiO2. The average pore width and specific surface area of this composite were 7.06 nm and 305 m2.g-1, respectively. The optimal amount of loaded Ag and Cu were 3% and 0.1%, respectively, which resulted in around 100% removal of Reactive Black 5 after 280 min UV-light irradiation. The degradation process followed pseudo-first-order kinetics. Ag and Cu-loaded nano-ZnO/SiO2 could be advantageous for suppressing the recombination of photo-generated holes and electrons, thus improving the degradation efficiency. The constant of degradation rate and adsorption equilibrium of 3%Ag/0.1%Cu/nano-ZnO/meso-SiO2 were 0.049 min–1 and 2.14 L.g-1, respectively. After three reuses, the Ag/Cu/ZnO/meso-SiO2 photocatalyst remained very stable during the photocatalytic process with no loss of photocatalytic activity. According to the GC-MS results, a probable degradation mechanism was estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.