This work presents a method of generating electric current based on the defects of few-layer boron nitride nanosheets (BNNSs). The density functional theory calculations showed that the atomic charge of the B atom in acetone was more positive than in water. The electrostatic force microscopy measurements illustrated that the local electrical potential was 0.35 mV in acetone, while the potential signal was very difficult to capture when using water as the dispersant. This effect was further demonstrated by the performance of the acoustic energy-harvesting nanogenerator: the BNNSs were assembled into a film after being dispersed in acetone and then integrated into the generator device, generating average output current of ∼0.98 nA, which was much better than 0.2 nA, the average output current of another device with water as the dispersant. These results demonstrated that solvent effects made the as-prepared BNNSs carry net charges, which could be utilized to harvest acoustic energy and generate current.
This paper presents a comprehensive and critical review of studies on nucleate pool boiling heat transfer, flow boiling heat transfer, critical heat flux (CHF) and two-phase flow phenomena with nanofluids. First, general analysis of the available studies on the relevant topics is presented. Then, studies of physical properties of nanofluids are discussed. Next, boiling heat transfer, CHF phenomena and the relevant physical mechanisms are explored. Finally, future research needs have been 2 identified according to the review and analysis. As the first priority, the physical properties of nanofluids have a significant effect on the boiling and CHF characteristics but the lack of the accurate knowledge of the physical properties has greatly limited the studies. Fundamentals of boiling heat transfer and CHF phenomena with Nanofluids have not yet been well understood. Flow regimes are important in understanding the boiling and CHF phenomena and should be focused on. Two phase pressure drops of nanofluids should also be studies. Furthermore, economic evaluation of the enhancement technology with nanofluid should be considered for the new heat transfer enhancement technology with nanofluids. Finally, applied research should be targeted to achieve an enabling practical heat transfer and CHF enhancement technology for engineering application with nanofluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.