BackgroundAccumulating evidence suggests that trigeminal neuralgia (TN) causes structural and functional alterations in the brain. However, only a few studies have focused on cerebral blood flow (CBF) changes in patients with TN. This study aimed to explore whether altered cerebral perfusion patterns exist in patients with TN and investigate the relationship between abnormal regional CBF (rCBF) and clinical characteristics of TN.Materials and methodsThis study included 28 patients with TN and 30 age- and sex-matched healthy controls (HCs) who underwent perfusion functional MRI (fMRI) of the brain using pseudo-continuous arterial spin labeling (pCASL) in the resting state. The regions of significantly altered CBF in patients with TN were detected using group comparison analyses. Then, the relationships between the clinical characteristics and abnormal rCBF were further investigated.ResultsCompared to the control group, patients with TN exhibited increased rCBF, primarily in the thalamus, middle frontal gyrus (MFG), and left insula. Furthermore, the CBF values of the thalamus were negatively correlated with the pain intensity of TN and positively correlated with pain duration in patients with TN.ConclusionPrimary alterations in rCBF in patients with TN occurred in different brain regions related to pain, which are involved in cognitive-affective interaction, pain perception, and pain modulation. These results indicate that non-invasive resting cerebral perfusion imaging may contribute complementary information to further understanding the neuropathological mechanism underlying TN.
(1) Background: The objective of this study was to determine whether arterial spin labeling (ASL), amide proton transfer (APT), or their combination could distinguish between patients with a low and high modified Rankin Scale (mRS) and forecast the effectiveness of the therapy; (2) Methods: Fifty-eight patients with subacute phase ischemic stroke were included in this study. Based on cerebral blood flow (CBF) and asymmetry magnetic transfer ratio (MTRasym) images, histogram analysis was performed on the ischemic area to acquire imaging biomarkers, and the contralateral area was used as a control. Imaging biomarkers were compared between the low (mRS 0–2) and high (mRS 3–6) mRS score groups using the Mann–Whitney U test. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the potential biomarkers in differentiating between the two groups; (3) Results: The rAPT 50th had an area under the ROC curve (AUC) of 0.728, with a sensitivity of 91.67% and a specificity of 61.76% for differentiating between patients with low and high mRS scores. Moreover, the AUC, sensitivity, and specificity of the rASL max were 0.926, 100%, and 82.4%, respectively. Combining the parameters with logistic regression could further improve the performance in predicting prognosis, leading to an AUC of 0.968, a sensitivity of 100%, and a specificity of 91.2%; (4) Conclusions: The combination of APT and ASL may be a potential imaging biomarker to reflect the effectiveness of thrombolytic therapy for stroke patients, assisting in guiding treatment approaches and identifying high-risk patients such as those with severe disability, paralysis, and cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.