Countermeasures against saltwater intrusion (SWI) are critical to prevent coastal groundwater deterioration. Among different measures to prevent SWI, subsurface dams have shown to be an effective approach, but it is likely to produce residual saltwater behind the dam in a landward aquifer. This study investigated the influences of subsurface dam design and aquifer properties on the dynamic characteristics of residual saltwater in a field‐scale aquifer and for the first time revealed the desalinization mechanism of residual saltwater behind the dams from the point of mixing zone. It was found that the low‐concentration mixing zone (LCMZ) (for the area between 10% and 50% of seawater salinity) was a major channel for the saltwater to flow over the dam to the ocean boundary while the residual salt was continuously dispersed to the LCMZ from the high‐concentration mixing zone (HCMZ) (for the area between 50% and 90% of seawater salinity) under high‐concentration gradients. Moreover, we developed two formulas of the reduction rate of saltwater wedge length (RSWL*) and the removal rate of total residual salt mass (RTSM*) to evaluate the desalination effectiveness of high‐ and low‐concentration residual saltwater, respectively. The results showed that it took much longer time for a taller dam and a dam at a closer position to the sea boundary to desalinize the high‐concentration residual saltwater in the upstream aquifer, more than 50 years for the cases of dam height beyond 16 m. On the contrary, only a slightly shorter time was needed to remove the low‐concentration saltwater behind the dams with the decrease of the distance from the sea boundary. Aquifer properties including the hydraulic gradient, hydraulic conductivity, and dispersivity strongly altered the desalinization time of the residual saltwater. The dispersivity was found to be the most critical factor influencing the removal effectiveness of saltwater retained in the landward aquifer. Increase of dispersivity from 1 to 3 m can dramatically reduce the desalinization time from more than 30 to 4 years.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater-seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.
Physical barriers are widely used to control seawater intrusion (SWI). Amongst different kinds of physical barriers, mixed physical barriers (MPBs) are shown to be an effective approach to prevent SWI. However, the system may hinder the discharge of fresh groundwater and the removal of residual saltwater trapped in the inland aquifers of MPBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.